A240670 Numbers n for which all exponents in the prime power factorization of (2*n)! are odious (A000069).
1, 3, 4, 5, 15, 16
Offset: 1
Examples
32! = 2^31*3^14*5^7*7^4*11^2*13^2*17*19*23*29*31, and all exponents: 31,14,7,4,2,2,1,1,1,1,1 are odious, so 16 is in the sequence.
Links
- D. Berend, G. Kolesnik, Regularity of patterns in the factorization of n!, J. Number Theory, 124 (2007), no. 1, 181-192.
- Vladimir Shevelev, Charles R. Greathouse IV, Peter J. C. Moses, On intervals (kn, (k+1)n) containing a prime for all n>1, Journal of Integer Sequences, Vol. 16 (2013), Article 13.7.3. arXiv:1212.2785
Programs
-
Mathematica
odiousQ[n_] := OddQ[DigitCount[n, 2][[1]]]; For[n = 1, True, n++, If[AllTrue[FactorInteger[(2 n)!][[All, 2]], odiousQ], Print[n]]] (* Jean-François Alcover, Sep 20 2018 *)
-
PARI
isok(n) = {f = factor((2*n)!); sum(i=1, #f~, hammingweight(f[i, 2]) % 2) == #f;} \\ Michel Marcus, Apr 11 2014
Comments