cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240715 Primes p such that p*q*r + 6 and p*q*r - 6 are primes where q and r are the next two primes after p.

Original entry on oeis.org

569, 1531, 1549, 7103, 7451, 9013, 10627, 10853, 11779, 11783, 12671, 12941, 14821, 14851, 17489, 18493, 20717, 20959, 25237, 26309, 27739, 29669, 29873, 34549, 35977, 36251, 37591, 38351, 38639, 39551, 40129, 45589, 46957, 47317, 48781, 55163, 55259
Offset: 1

Views

Author

K. D. Bajpai, Apr 10 2014

Keywords

Examples

			569 is in the sequence because 569*571*577 + 6 = 187466729 and 569*571*577 - 6 = 187466717 are both prime where 571 and 577 are the next two primes after 569.
1531 is in the sequence because 1531*1543*1549 + 6 = 3659253823 and 1531*1543*1549 - 6 = 3659253811 are both prime where 1543 and 1549 are the next two primes after 1531.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(10^5) | IsPrime(t-6) and IsPrime(t+6) where t is p*NextPrime(p)*NextPrime(NextPrime(p))]; // Bruno Berselli, Apr 11 2014
  • Maple
    KD := proc(n) local a,b,d; a:=ithprime(n)*ithprime(n+1)*ithprime(n+2); b:=a+6; d:=a-6; if  isprime(b) and isprime(d) then RETURN (ithprime(n)); fi; end: seq(KD(n), n=1..10000);
  • Mathematica
    c = 0; Do[If[PrimeQ[Prime[n]*Prime[n+1]*Prime[n+2] +6] && PrimeQ[Prime[n]*Prime[n+1]*Prime[n+2] -6],c=c+1;Print[c, " ", Prime[n]]],{n,1,500000}];
    KD={};   f=Prime[n+1]*Prime[n+2];  Do[p=Prime[n]; If[ PrimeQ[p*f+6] && PrimeQ[p*f-6], AppendTo[KD,p]], {n,10000}]; KD
    Select[Partition[Prime[Range[6000]],3,1],AllTrue[Times@@#+{6,-6},PrimeQ]&][[All,1]] (* Harvey P. Dale, Oct 29 2022 *)