A240719 Numbers k such that 2^k == 1 (mod (k+1)^2).
1092, 3510
Offset: 1
Links
- J. Dobes and M. Kures, Search for Wieferich primes through the use of periodic binary strings, Serdica J. Computing, Volume 4, Number 3, 2010, 293-300.
- J. B. Dobson, A note on the two known Wieferich primes
- W. Johnson, On the nonvanishing of Fermat quotients (mod p), J. reine angew. Math., Issue 292 (Jan 1977), 196-200.
- L. C. Washington, On Fermat's last theorem, J. reine angew. Math., Issue 289 (Jan 1977), 115-117.
Programs
-
Mathematica
fQ[n_] := PowerMod[2, n, (n + 1)^2] == 1; Select[ Range@ 3600, fQ] (* Robert G. Wilson v, Jun 17 2015 *)
-
PARI
isok(n) = lift(Mod(2, (n+1)^2)^n) == 1; \\ Michel Marcus, Apr 12 2014
-
PARI
test(lim)=my(t=1); for(i=0, log(lim)\log(1093), my(n=t); while(n<=lim, if(Mod(2,n^2)^(n-1)==1&&n>1, print(n-1)); n*=3511); t*=1093) test(1.2e17) \\ Test up to the current search bound for Wieferich primes; Charles R Greathouse IV, Apr 12 2014
Comments