A240846 a(0)=0, a(1)=1, a(n) = a(n-1)*12 + 13.
0, 1, 25, 313, 3769, 45241, 542905, 6514873, 78178489, 938141881, 11257702585, 135092431033, 1621109172409, 19453310068921, 233439720827065, 2801276649924793, 33615319799097529, 403383837589170361, 4840606051070044345, 58087272612840532153
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..900
- Index entries for linear recurrences with constant coefficients, signature (13,-12).
Crossrefs
Cf. A240735.
Programs
-
GAP
Concatenation([0], List([1..20], n-> (2^(2*n+1)*3^n - 13)/11 )); # G. C. Greubel, Feb 06 2020
-
Magma
[0] cat [(2^(2*n+1)*3^n - 13)/11: n in [1..20]]; // G. C. Greubel, Feb 06 2020
-
Maple
A240846:=n->`if`(n=0, 0, (2^(1+2*n)*3^n-13)/11); seq(A240846(n), n=0..20); # Wesley Ivan Hurt, Apr 13 2014
-
Mathematica
Join[{0},NestList[12#+13&,1,20]] (* or *) LinearRecurrence[{13,-12},{0,1,25},30] (* Harvey P. Dale, Sep 08 2017 *)
-
PARI
{a(n)=if(n<=0, 0, if(n<2, 1, a(n-1)*12+13))} for(n=0, 20, print1(a(n),", "))
-
Sage
[0]+[(2^(2*n+1)*3^n - 13)/11 for n in (1..20)] # G. C. Greubel, Feb 06 2020
Formula
From Colin Barker, Apr 13 2014: (Start)
a(n) = (2^(2*n+1)*3^n - 13)/11 for n>0.
a(n) = 13*a(n-1) - 12*a(n-2) for n>2.
G.f.: x*(1+12*x) /((1-x)*(1-12*x)). (End).
E.g.f.: (11 - 13*exp(x) + 2*exp(12*x))/11. - G. C. Greubel, Feb 06 2020
Extensions
Name changed by Colin Barker, Apr 13 2014
Comments