A240861 Number of partitions p of n into distinct parts not including the number of parts.
1, 0, 1, 1, 2, 2, 2, 4, 4, 5, 6, 9, 10, 12, 14, 18, 22, 26, 30, 36, 42, 51, 60, 70, 81, 94, 110, 128, 148, 172, 198, 226, 260, 298, 342, 390, 446, 508, 577, 654, 742, 840, 951, 1074, 1212, 1366, 1538, 1728, 1940, 2176, 2440, 2732, 3056, 3416, 3814, 4254
Offset: 0
Examples
a(10) counts these 6 partitions: {10}, {9,1}, {7,3}, {7,2,1}, {6,4}, {5,4,1}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..4000
- Atul Dixit, Gaurav Kumar, and Aviral Srivastava, Non-Rascoe partitions and a rank parity function associated to the Rogers-Ramanujan partitions, arXiv:2508.04359 [math.CO], 2025. See references.
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add( `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n) end: b:= proc(n, i, p) option remember; `if`(i*(i+1)/2
[add(coeff(f[1], x, j)*x^j , j=i+1..degree(f[1])), f[2]+coeff(f[1], x, i)])( b(n-i, min(n-i, i-1), p+1))+b(n, i-1, p))) end: a:= n-> g(n)-b(n$2, 0)[2]: seq(a(n), n=0..55); # Alois P. Heinz, Mar 14 2024 -
Mathematica
z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; Table[Count[f[n], p_ /; MemberQ[p, Length[p]]], {n, 0, z}] (* A240855 *) Table[Count[f[n], p_ /; !MemberQ[p, Length[p]]], {n, 0, z}] (* A240861 *)
Extensions
a(0) changed to 1 by Alois P. Heinz, Mar 14 2024