cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240861 Number of partitions p of n into distinct parts not including the number of parts.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 2, 4, 4, 5, 6, 9, 10, 12, 14, 18, 22, 26, 30, 36, 42, 51, 60, 70, 81, 94, 110, 128, 148, 172, 198, 226, 260, 298, 342, 390, 446, 508, 577, 654, 742, 840, 951, 1074, 1212, 1366, 1538, 1728, 1940, 2176, 2440, 2732, 3056, 3416, 3814, 4254
Offset: 0

Views

Author

Clark Kimberling, Apr 14 2014

Keywords

Examples

			a(10) counts these 6 partitions:  {10}, {9,1}, {7,3}, {7,2,1}, {6,4}, {5,4,1}.
		

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 [add(coeff(f[1], x, j)*x^j
            , j=i+1..degree(f[1])), f[2]+coeff(f[1], x, i)])(
            b(n-i, min(n-i, i-1), p+1))+b(n, i-1, p)))
        end:
    a:= n-> g(n)-b(n$2, 0)[2]:
    seq(a(n), n=0..55);  # Alois P. Heinz, Mar 14 2024
  • Mathematica
    z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
    Table[Count[f[n], p_ /; MemberQ[p, Length[p]]], {n, 0, z}]  (* A240855 *)
    Table[Count[f[n], p_ /; !MemberQ[p, Length[p]]], {n, 0, z}] (* A240861 *)

Formula

a(n) = A000009(n) - A240855(n).

Extensions

a(0) changed to 1 by Alois P. Heinz, Mar 14 2024