A364272
Number of strict integer partitions of n containing the sum of some subset of the parts. A variation of sum-full strict partitions.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 1, 4, 3, 8, 6, 11, 10, 17, 16, 26, 25, 39, 39, 54, 60, 82, 84, 116, 126, 160, 177, 222, 242, 302, 337, 402, 453, 542, 601, 722, 803, 936, 1057, 1234, 1373, 1601, 1793, 2056, 2312, 2658, 2950, 3395, 3789, 4281, 4814, 5452, 6048
Offset: 0
The a(6) = 1 through a(16) = 11 partitions (A=10):
(321) . (431) . (532) (5321) (642) (5431) (743) (6432) (853)
(541) (651) (6421) (752) (6531) (862)
(4321) (5421) (7321) (761) (7431) (871)
(6321) (5432) (7521) (6532)
(6431) (9321) (6541)
(6521) (54321) (7432)
(7421) (7621)
(8321) (8431)
(8521)
(A321)
(64321)
The linear combination-free version is
A364350.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Intersection[#, Total/@Subsets[#,{2,Length[#]}]]!={}&]],{n,0,30}]
A364345
Number of integer partitions of n without any three parts (a,b,c) (repeats allowed) satisfying a + b = c. A variation of sum-free partitions.
Original entry on oeis.org
1, 1, 2, 2, 4, 5, 7, 10, 13, 16, 21, 27, 34, 43, 54, 67, 83, 102, 122, 151, 182, 218, 258, 313, 366, 443, 513, 611, 713, 844, 975, 1149, 1325, 1554, 1780, 2079, 2381, 2761, 3145, 3647, 4134, 4767, 5408, 6200, 7014, 8035, 9048, 10320, 11639, 13207, 14836, 16850
Offset: 0
The a(1) = 1 through a(8) = 13 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (32) (33) (43) (44)
(31) (41) (51) (52) (53)
(1111) (311) (222) (61) (62)
(11111) (411) (322) (71)
(3111) (331) (332)
(111111) (511) (611)
(4111) (2222)
(31111) (3311)
(1111111) (5111)
(41111)
(311111)
(11111111)
For subsets of {1..n} instead of partitions we have
A007865 (sum-free sets), differences
A288728.
-
Table[Length[Select[IntegerPartitions[n],Select[Tuples[Union[#],3],#[[1]]+#[[2]]==#[[3]]&]=={}&]],{n,0,30}]
A364349
Number of strict integer partitions of n containing the sum of no subset of the parts.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 7, 11, 11, 15, 14, 21, 21, 28, 29, 38, 38, 51, 50, 65, 68, 82, 83, 108, 106, 130, 136, 163, 168, 206, 210, 248, 266, 307, 322, 381, 391, 457, 490, 553, 582, 675, 703, 797, 854, 952, 1000, 1147, 1187, 1331, 1437, 1564, 1656, 1869
Offset: 0
The partition y = (7,5,3,1) has no subset with sum in y, so is counted under a(16).
The partition y = (15,8,4,2,1) has subset {1,2,4,8} with sum in y, so is not counted under a(31).
The a(1) = 1 through a(9) = 8 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(2,1) (3,1) (3,2) (4,2) (4,3) (5,3) (5,4)
(4,1) (5,1) (5,2) (6,2) (6,3)
(6,1) (7,1) (7,2)
(4,2,1) (5,2,1) (8,1)
(4,3,2)
(5,3,1)
(6,2,1)
The complement in strict partitions is counted by
A364272.
The linear combination-free version is
A364350.
A236912 counts sum-free partitions (not re-using parts), complement
A237113.
-
Table[Length[Select[IntegerPartitions[n],Function[ptn,UnsameQ@@ptn&&Select[Subsets[ptn,{2,Length[ptn]}],MemberQ[ptn,Total[#]]&]=={}]]],{n,0,30}]
A364346
Number of strict integer partitions of n such that there is no ordered triple of parts (a,b,c) (repeats allowed) satisfying a + b = c. A variation of sum-free strict partitions.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 2, 4, 4, 5, 5, 8, 9, 11, 11, 16, 16, 20, 20, 25, 30, 34, 38, 42, 50, 58, 64, 73, 80, 90, 105, 114, 128, 148, 158, 180, 201, 220, 241, 277, 306, 333, 366, 404, 447, 497, 544, 592, 662, 708, 797, 861, 954, 1020, 1131, 1226, 1352, 1456, 1600
Offset: 0
The a(1) = 1 through a(14) = 11 partitions (A..E = 10..14):
1 2 3 4 5 6 7 8 9 A B C D E
31 32 51 43 53 54 64 65 75 76 86
41 52 62 72 73 74 93 85 95
61 71 81 82 83 A2 94 A4
531 91 92 B1 A3 B3
A1 543 B2 C2
641 732 C1 D1
731 741 652 851
831 751 932
832 941
931 A31
For subsets of {1..n} we have
A007865 (sum-free sets), differences
A288728.
A236912 counts sum-free partitions not re-using parts, complement
A237113.
Cf.
A002865,
A025065,
A085489,
A093971,
A108917,
A111133,
A240861,
A275972,
A320347,
A325862,
A326083,
A363260.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Select[Tuples[#,3],#[[1]]+#[[2]]==#[[3]]&]=={}&]],{n,0,15}]
-
from collections import Counter
from itertools import combinations_with_replacement
from sympy.utilities.iterables import partitions
def A364346(n): return sum(1 for p in partitions(n) if max(p.values(),default=1)==1 and not any(q[0]+q[1]==q[2] for q in combinations_with_replacement(sorted(Counter(p).elements()),3))) # Chai Wah Wu, Sep 20 2023
A367213
Number of integer partitions of n whose length (number of parts) is not equal to the sum of any submultiset.
Original entry on oeis.org
0, 0, 1, 1, 2, 2, 5, 4, 7, 8, 12, 13, 19, 21, 29, 33, 45, 49, 67, 73, 97, 108, 139, 152, 196, 217, 274, 303, 379, 420, 523, 579, 709, 786, 960, 1061, 1285, 1423, 1714, 1885, 2265, 2498, 2966, 3280, 3881, 4268, 5049, 5548, 6507, 7170, 8391, 9194, 10744, 11778, 13677
Offset: 0
The a(3) = 1 through a(9) = 8 partitions:
(3) (4) (5) (6) (7) (8) (9)
(3,1) (4,1) (3,3) (4,3) (4,4) (5,4)
(5,1) (6,1) (5,3) (6,3)
(2,2,2) (5,1,1) (7,1) (8,1)
(4,1,1) (4,2,2) (4,4,1)
(6,1,1) (5,2,2)
(5,1,1,1) (7,1,1)
(6,1,1,1)
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
Triangles:
A046663 counts partitions of n without a subset-sum k, strict
A365663.
-
Table[Length[Select[IntegerPartitions[n], FreeQ[Total/@Subsets[#], Length[#]]&]], {n,0,10}]
A363226
Number of strict integer partitions of n containing some three possibly equal parts (a,b,c) such that a + b = c. A variation of sum-full strict partitions.
Original entry on oeis.org
0, 0, 0, 1, 0, 0, 2, 1, 2, 3, 5, 4, 6, 7, 11, 11, 16, 18, 26, 29, 34, 42, 51, 62, 72, 84, 101, 119, 142, 166, 191, 226, 262, 300, 354, 405, 467, 540, 623, 705, 807, 927, 1060, 1206, 1369, 1551, 1760, 1998, 2248, 2556, 2861, 3236, 3628, 4100, 4587, 5152, 5756
Offset: 0
The a(3) = 1 through a(15) = 11 partitions (A=10, B=11, C=12):
21 . . 42 421 431 63 532 542 84 643 653 A5
321 521 432 541 632 642 742 743 843
621 631 821 651 841 752 942
721 5321 921 A21 761 C21
4321 5421 5431 842 6432
6321 6421 B21 6531
7321 5432 7431
6431 7521
6521 8421
7421 9321
8321 54321
For subsets of {1..n} we have
A093971 (sum-full sets), complement
A007865.
A236912 counts sum-free partitions not re-using parts, complement
A237113.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Select[Tuples[#,3],#[[1]]+#[[2]]==#[[3]]&]!={}&]],{n,0,30}]
-
from itertools import combinations_with_replacement
from collections import Counter
from sympy.utilities.iterables import partitions
def A363226(n): return sum(1 for p in partitions(n) if max(p.values(),default=0)==1 and any(q[0]+q[1]==q[2] for q in combinations_with_replacement(sorted(Counter(p).elements()),3))) # Chai Wah Wu, Sep 20 2023
A367214
Number of strict integer partitions of n whose length (number of parts) is equal to the sum of some submultiset.
Original entry on oeis.org
1, 1, 0, 1, 0, 1, 2, 2, 3, 4, 5, 5, 7, 8, 10, 12, 14, 17, 21, 25, 30, 36, 43, 51, 60, 71, 83, 97, 113, 132, 153, 178, 205, 238, 272, 315, 360, 413, 471, 539, 613, 698, 792, 899, 1018, 1153, 1302, 1470, 1658, 1867, 2100, 2362, 2652, 2974, 3335, 3734, 4178, 4672
Offset: 0
The strict partition (6,4,3,2,1) has submultisets {1,4} and {2,3} with sum 5 so is counted under a(16).
The a(1) = 1 through a(10) = 5 strict partitions:
(1) . (2,1) . (3,2) (4,2) (5,2) (6,2) (7,2) (8,2)
(3,2,1) (4,2,1) (4,3,1) (4,3,2) (5,3,2)
(5,2,1) (5,3,1) (6,3,1)
(6,2,1) (7,2,1)
(4,3,2,1)
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A240855 counts strict partitions whose length is a part, complement
A240861.
Triangles:
A365661 counts strict partitions with a subset-sum k, non-strict
A365543.
Cf.
A002865,
A126796,
A237113,
A237668,
A238628,
A363225,
A364346,
A364350,
A364533,
A365311,
A365922.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&MemberQ[Total/@Subsets[#], Length[#]]&]], {n,0,30}]
A367215
Number of strict integer partitions of n whose length (number of parts) is not equal to the sum of any subset.
Original entry on oeis.org
0, 0, 1, 1, 2, 2, 2, 3, 3, 4, 5, 7, 8, 10, 12, 15, 18, 21, 25, 29, 34, 40, 46, 53, 62, 71, 82, 95, 109, 124, 143, 162, 185, 210, 240, 270, 308, 347, 393, 443, 500, 562, 634, 711, 798, 895, 1002, 1120, 1252, 1397, 1558, 1735, 1930, 2146, 2383, 2644, 2930, 3245
Offset: 0
The a(2) = 1 through a(11) = 7 strict partitions:
(2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
(3,1) (4,1) (5,1) (4,3) (5,3) (5,4) (6,4) (6,5)
(6,1) (7,1) (6,3) (7,3) (7,4)
(8,1) (9,1) (8,3)
(5,4,1) (10,1)
(5,4,2)
(6,4,1)
The a(2) = 1 through a(15) = 15 strict partitions (A..F = 10..15):
2 3 4 5 6 7 8 9 A B C D E F
31 41 51 43 53 54 64 65 75 76 86 87
61 71 63 73 74 84 85 95 96
81 91 83 93 94 A4 A5
541 A1 B1 A3 B3 B4
542 642 C1 D1 C3
641 651 652 752 E1
741 742 761 654
751 842 762
841 851 852
941 861
6521 942
951
A41
7521
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A124506 appears to count combination-free subsets, differences of
A326083.
A240861 counts strict partitions with length not a part, complement
A240855.
Triangles:
A365661 counts strict partitions with a subset-sum k, non-strict
A365543.
A365663 counts strict partitions without a subset-sum k, non-strict
A046663.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Subsets[#], Length[#]]&]], {n,0,30}]
A367216
Number of subsets of {1..n} whose cardinality is equal to the sum of some subset.
Original entry on oeis.org
1, 2, 3, 5, 10, 20, 40, 82, 169, 348, 716, 1471, 3016, 6171, 12605, 25710, 52370, 106539, 216470, 439310, 890550, 1803415, 3648557, 7375141, 14896184, 30065129, 60639954, 122231740, 246239551, 495790161, 997747182, 2006969629, 4035274292, 8110185100, 16293958314, 32724456982
Offset: 0
The a(0) = 1 through a(4) = 10 subsets:
{} {} {} {} {}
{1} {1} {1} {1}
{1,2} {1,2} {1,2}
{2,3} {2,3}
{1,2,3} {2,4}
{1,2,3}
{1,2,4}
{1,3,4}
{2,3,4}
{1,2,3,4}
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A240855 counts strict partitions whose length is a part, complement
A240861.
Triangles:
A365541 counts sets containing two distinct elements summing to k.
-
Table[Length[Select[Subsets[Range[n]], MemberQ[Total/@Subsets[#], Length[#]]&]], {n,0,10}]
A367217
Number of subsets of {1..n} whose cardinality is not equal to the sum of any subset.
Original entry on oeis.org
0, 0, 1, 3, 6, 12, 24, 46, 87, 164, 308, 577, 1080, 2021, 3779, 7058, 13166, 24533, 45674, 84978, 158026, 293737, 545747, 1013467, 1881032, 3489303, 6468910, 11985988, 22195905, 41080751, 75994642, 140514019, 259693004, 479749492, 885910870, 1635281386
Offset: 0
The a(2) = 1 through a(5) = 12 subsets:
{2} {2} {2} {2}
{3} {3} {3}
{1,3} {4} {4}
{1,3} {5}
{1,4} {1,3}
{3,4} {1,4}
{1,5}
{3,4}
{3,5}
{4,5}
{1,4,5}
{2,4,5}
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A229816 counts partitions whose length is not a part, complement
A002865.
A124506 appears to count combination-free subsets, differences of
A326083.
Triangles:
A046663 counts partitions of n without a subset-sum k, strict
A365663.
A365541 counts sets containing two distinct elements summing to k.
Cf.
A068911,
A103580,
A240861,
A288728,
A326080,
A326083,
A364346,
A364349,
A365046,
A365376,
A365377.
-
Table[Length[Select[Subsets[Range[n]], FreeQ[Total/@Subsets[#], Length[#]]&]], {n,0,15}]
Showing 1-10 of 19 results.
Comments