cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A248524 Beatty sequence for 1/(1-Pi^(-1/3)).

Original entry on oeis.org

3, 6, 9, 12, 15, 18, 22, 25, 28, 31, 34, 37, 40, 44, 47, 50, 53, 56, 59, 63, 66, 69, 72, 75, 78, 81, 85, 88, 91, 94, 97, 100, 104, 107, 110, 113, 116, 119, 122, 126, 129, 132, 135, 138, 141, 145, 148, 151, 154, 157, 160, 163, 167, 170, 173, 176, 179, 182
Offset: 1

Views

Author

M. F. Hasler, Oct 07 2014

Keywords

Comments

Beatty complement of A240977.

Crossrefs

Cf. A092039 (Pi^(1/3)), A093204 (Pi^(-1/3)), A022844 (Beatty seq. for Pi), A037086 (Beatty seq. for sqrt(Pi)).

Programs

  • Mathematica
    Table[Floor[n/(1 - Pi^(-1/3))], {n, 1, 50}] (* G. C. Greubel, Apr 06 2017 *)
  • PARI
    a(n)=n\(1-Pi^(-1/3))

Formula

a(n) = floor(n/(1-Pi^(-1/3))).

A248758 Ceiling(n*Pi^(1/3)).

Original entry on oeis.org

0, 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 22, 24, 25, 27, 28, 30, 31, 33, 34, 36, 37, 39, 40, 42, 43, 44, 46, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96
Offset: 0

Views

Author

Juliann Barbella, Oct 13 2014

Keywords

Comments

Cube root of the volume of a cylinder with radius and height n rounded up to the nearest integer. - Wesley Ivan Hurt, Oct 13 2014

Crossrefs

Cf. A240977 (similar, with floor).

Programs

  • Java
    static int a(int n) {return (int) Math.ceil(n*Math.pow(Math.PI, (1.0/3))); }
    
  • Magma
    [Ceiling(n*Pi(RealField(100))^(1/3)) : n in [0..100]]; // Wesley Ivan Hurt, Oct 13 2014
  • Maple
    A248758:=n->ceil(n*Pi^(1/3)): seq(A248758(n), n=0..100); # Wesley Ivan Hurt, Oct 13 2014
  • Mathematica
    Table[Ceiling[n*Pi^(1/3)], {n, 0, 100}] (* Wesley Ivan Hurt, Oct 13 2014 *)

Formula

a(n) = ceiling(n*Pi^(1/3)).
a(n) = A240977(n)+1 for all n>0. - M. F. Hasler, Oct 14 2014
Showing 1-2 of 2 results.