cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Juliann Barbella

Juliann Barbella's wiki page.

Juliann Barbella has authored 3 sequences.

A248469 a(n) = floor((2*n^2)/e).

Original entry on oeis.org

0, 2, 6, 11, 18, 26, 36, 47, 59, 73, 89, 105, 124, 144, 165, 188, 212, 238, 265, 294, 324, 356, 389, 423, 459, 497, 536, 576, 618, 662, 707, 753, 801, 850, 901, 953, 1007, 1062, 1119, 1177, 1236, 1297, 1360, 1424, 1489, 1556, 1625, 1695, 1766, 1839
Offset: 1

Author

Juliann Barbella, Oct 06 2014

Keywords

Crossrefs

Cf. A032635 (floor(n^2/e)).

Programs

  • Java
    int a(int n) {return (int) ((2*Math.pow(x, 2))/Math.exp(1.0)); }
    
  • Mathematica
    Table[Floor[(2 n^2)/ E ], {n, 1, 60}] (* Vincenzo Librandi, Oct 23 2014 *)
  • PARI
    a(n) = (2*n^2)\exp(1) \\ Michel Marcus, Oct 25 2014

Formula

a(n) = floor((2*n^2)/e).

Extensions

More terms from Vincenzo Librandi, Oct 23 2014

A248758 Ceiling(n*Pi^(1/3)).

Original entry on oeis.org

0, 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 22, 24, 25, 27, 28, 30, 31, 33, 34, 36, 37, 39, 40, 42, 43, 44, 46, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96
Offset: 0

Author

Juliann Barbella, Oct 13 2014

Keywords

Comments

Cube root of the volume of a cylinder with radius and height n rounded up to the nearest integer. - Wesley Ivan Hurt, Oct 13 2014

Crossrefs

Cf. A240977 (similar, with floor).

Programs

  • Java
    static int a(int n) {return (int) Math.ceil(n*Math.pow(Math.PI, (1.0/3))); }
    
  • Magma
    [Ceiling(n*Pi(RealField(100))^(1/3)) : n in [0..100]]; // Wesley Ivan Hurt, Oct 13 2014
  • Maple
    A248758:=n->ceil(n*Pi^(1/3)): seq(A248758(n), n=0..100); # Wesley Ivan Hurt, Oct 13 2014
  • Mathematica
    Table[Ceiling[n*Pi^(1/3)], {n, 0, 100}] (* Wesley Ivan Hurt, Oct 13 2014 *)

Formula

a(n) = ceiling(n*Pi^(1/3)).
a(n) = A240977(n)+1 for all n>0. - M. F. Hasler, Oct 14 2014

A248198 a(n) = ceiling(n^3*(Pi/2)).

Original entry on oeis.org

2, 13, 43, 101, 197, 340, 539, 805, 1146, 1571, 2091, 2715, 3452, 4311, 5302, 6434, 7718, 9161, 10775, 12567, 14548, 16726, 19112, 21715, 24544, 27609, 30918, 34483, 38311, 42412, 46796, 51472, 56450, 61739, 67348, 73288, 79566, 86193, 93179, 100531
Offset: 1

Author

Juliann Barbella, Oct 03 2014

Keywords

Comments

a(n) is the ceiling of the area of a square with diagonal n times the circumference of a circle with diameter n. - Wesley Ivan Hurt, Oct 03 2014
a(n) is also the ceiling of the volume of a cylinder with radius n and height n/2. Equivalently, a(n) is the ceiling of the volume of a cylinder with diameter n and height 2*n. - Derek Orr, Oct 03 2014

Crossrefs

Cf. A228391 (similar, with floor).

Programs

  • Java
    int a(int n) {return (int) Math.ceil(Math.pow(n, 3)*Math.PI/(2)); }
    
  • Maple
    A248198:=n->ceil(n^3*(Pi/2)): seq(A248198(n), n=1..40); # Wesley Ivan Hurt, Oct 03 2014
  • Mathematica
    Table[Ceiling[n^3*(Pi/2)], {n, 40}] (* Wesley Ivan Hurt, Oct 03 2014 *)
  • PARI
    vector(100,n,ceil(n^3*Pi/2)) \\ Derek Orr, Oct 03 2014