A241100 Smallest prime with length n having at least n-1 identical digits.
2, 11, 101, 1117, 10111, 101111, 1111151, 11110111, 101111111, 1111111121, 11111111113, 101111111111, 1111111118111, 11111111111411, 111111111116111, 1111111111111181, 11111111101111111, 101111111111111111, 1111111111111111111, 11011111111111111111
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory):lst:={}:nn:=80:kk:=0:T:=array(1..nn):U:=array(1..20): for n from 2 to nn do: for i from 1 to n do: T[i]:=1: od: ii:=0: for k from 0 to 9 while(ii=0)do: for j from 1 to n while(ii=0)do: T[j]:=k:s:=sum('T[i]*10^(n-i)', 'i'=1..n): if type(s,prime)=true and length(s)=n then ii:=1: kk:=kk+1:U[kk]:=s: else T[j]:=1: fi: od: od: od : print(U) :
-
Mathematica
f[n_] := Block[{k = n - 2, p = 0, r = (10^n - 1)/9, s}, If[ Mod[n, 3] != 1, While[p = r - 10^k; k > 0 && ! PrimeQ@ p, k--]]; If[ Mod[p, 10] == 0, k = 0; s = Select[Range[0, 8], Mod[# + n, 3] > 0 &]; While[p = Select[r + 10^k*s, PrimeQ]; k < n && p == {}, k++]]; p = Min@ p]; Array[f, 20] (* Robert G. Wilson v, Dec 14 2015 *) Table[SelectFirst[Sort[Flatten[Table[Select[FromDigits/@Permutations[PadRight[{d},n,1]],IntegerLength[#] == n&],{d,0,9}]]],PrimeQ],{n,20}] (* Assumes that Chai Wah Wu's conjecture, above, is correct. *) (* Harvey P. Dale, Oct 23 2024 *)
-
Python
from _future_ import division from sympy import isprime def A241100(n): for i in range(1,10): x = i*(10**n-1)//9 for j in range(n-1,-1,-1): for k in range(i,-1,-1): if j < n-1 or k < i: y = x-k*(10**j) if isprime(y): return y for j in range(n): for k in range(1,9-i+1): y = x+k*(10**j) if isprime(y): return y # Chai Wah Wu, Dec 29 2015
Extensions
a(4), a(7), a(10), a(11), a(13)-a(16) corrected by Chai Wah Wu, Dec 10 2015
a(1) from Robert G. Wilson v, Dec 11 2015
Comments