cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241131 Number of partitions p of n such that (maximal multiplicity over the parts of p) = number of 1s in p.

Original entry on oeis.org

0, 1, 1, 2, 3, 4, 7, 9, 13, 18, 26, 32, 47, 60, 79, 104, 137, 173, 227, 285, 365, 461, 583, 724, 912, 1129, 1403, 1729, 2137, 2611, 3211, 3906, 4765, 5777, 7010, 8450, 10213, 12263, 14738, 17637, 21113, 25158, 30008, 35638, 42333, 50130, 59346, 70035, 82663
Offset: 0

Views

Author

Clark Kimberling, Apr 24 2014

Keywords

Examples

			a(6) counts these 7 partitions:  51, 411, 321, 3111, 2211, 21111, 111111.
		

Crossrefs

Programs

  • Maple
    b:= proc(n,i,m) option remember; `if`(i=1, `if`(n>=m, 1, 0),
          add(b(n-i*j, i-1, max(j, m)), j=0..n/i))
        end:
    a:= n-> `if`(n=0, 0, b(n$2, 0)):
    seq(a(n), n=0..48);  # Alois P. Heinz, Mar 15 2024
  • Mathematica
    z = 30; m[p_] := Max[Map[Length, Split[p]]]; Table[Count[IntegerPartitions[n], p_ /; m[p] == Count[p, 1]], {n, 0, z}]
  • PARI
    A_x(N)={my(x='x+O('x^N),g=sum(i=1, N, x^i*prod(j=2, N, (1-x^(j*(i+1)))/(1-x^j))));
    concat([0],Vec(g))}
    A_x(50) \\ John Tyler Rascoe, Mar 12 2024

Formula

G.f.: Sum_{i>0} x^i * Product_{j>1} ((1 - x^(j*(i+1)))/(1 - x^j)). - John Tyler Rascoe, Mar 12 2024
a(n) ~ c * exp(Pi*sqrt(2*n/3)) / n, where c = 0.07449179... - Vaclav Kotesovec, Jun 21 2025