A241131 Number of partitions p of n such that (maximal multiplicity over the parts of p) = number of 1s in p.
0, 1, 1, 2, 3, 4, 7, 9, 13, 18, 26, 32, 47, 60, 79, 104, 137, 173, 227, 285, 365, 461, 583, 724, 912, 1129, 1403, 1729, 2137, 2611, 3211, 3906, 4765, 5777, 7010, 8450, 10213, 12263, 14738, 17637, 21113, 25158, 30008, 35638, 42333, 50130, 59346, 70035, 82663
Offset: 0
Examples
a(6) counts these 7 partitions: 51, 411, 321, 3111, 2211, 21111, 111111.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..9500 (terms 0..300 from John Tyler Rascoe, terms 301..2000 from Alois P. Heinz)
Programs
-
Maple
b:= proc(n,i,m) option remember; `if`(i=1, `if`(n>=m, 1, 0), add(b(n-i*j, i-1, max(j, m)), j=0..n/i)) end: a:= n-> `if`(n=0, 0, b(n$2, 0)): seq(a(n), n=0..48); # Alois P. Heinz, Mar 15 2024
-
Mathematica
z = 30; m[p_] := Max[Map[Length, Split[p]]]; Table[Count[IntegerPartitions[n], p_ /; m[p] == Count[p, 1]], {n, 0, z}]
-
PARI
A_x(N)={my(x='x+O('x^N),g=sum(i=1, N, x^i*prod(j=2, N, (1-x^(j*(i+1)))/(1-x^j)))); concat([0],Vec(g))} A_x(50) \\ John Tyler Rascoe, Mar 12 2024
Formula
G.f.: Sum_{i>0} x^i * Product_{j>1} ((1 - x^(j*(i+1)))/(1 - x^j)). - John Tyler Rascoe, Mar 12 2024
a(n) ~ c * exp(Pi*sqrt(2*n/3)) / n, where c = 0.07449179... - Vaclav Kotesovec, Jun 21 2025