A241196 Primes p at which phi(p-1)/(p-1) reaches a new minimum, where phi is Euler's totient function.
2, 3, 7, 31, 211, 2311, 43891, 78541, 120121, 870871, 1381381, 2282281, 4084081, 13123111, 82192111, 106696591, 300690391, 562582021, 892371481, 6915878971, 71166625531, 200560490131
Offset: 1
References
- R. K. Guy, Unsolved Problems in Number Theory, A2.
Links
- Tamiru Jarso, Tim Trudgian, Quadratic residues that are not primitive roots, arXiv:1710.04320 [math.NT], 2017.
- Eric Weisstein's World of Mathematics, Euclid Number
Programs
-
Maple
m:= infinity: p:= 1: count:= 0: while count < 10 do p:= nextprime(p); r:= numtheory:-phi(p-1)/(p-1); if r < m then count:= count+1; A[count]:= p; m:= r; fi od: seq(A[i],i=1..count); # Robert Israel, Jan 18 2016
-
Mathematica
tMin = {{2, 1}}; Do[p = Prime[n]; tn = EulerPhi[p - 1]/(p - 1); If[tn < tMin[[-1, -1]], AppendTo[tMin, {p, tn}]], {n, 10^7}]; Transpose[tMin][[1]]
Extensions
a(20) from Dimitri Papadopoulos, Jan 11 2016
a(21)-a(22) from Giovanni Resta, Apr 14 2016
Comments