cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241199 Numbers n such that 4 consecutive terms of binomial(n,k) satisfy a quadratic relation for 0 <= k <= n/2.

Original entry on oeis.org

14, 19, 31, 38, 54, 63, 83, 94, 118, 131, 159, 174, 206, 223, 259, 278, 318, 339, 383, 406, 454, 479, 531, 558, 614, 643, 703, 734, 798, 831, 899, 934, 1006, 1043, 1119, 1158, 1238, 1279, 1363, 1406, 1494, 1539, 1631, 1678, 1774, 1823, 1923, 1974, 2078, 2131
Offset: 1

Views

Author

T. D. Noe, Apr 17 2014

Keywords

Comments

From Robert Israel, Apr 28 2015: (Start)
Numbers n >= 14 such that 3*n + 7 is a square.
This is because
C(n,i+3) - 3*C(n,i+2) + 3*C(n,i+1) - C(n,i) = n!/((n-i)!*(i+3)!) * g(n,i)
where g(n,i) = (n-3-2*i) * ((n-3-2*i)^2 - 3*n - 7). (End)

Examples

			Binomial(14,k) = (1, 14, 91, 364, 1001, 2002, 3003, 3432) for k = 0..7. The 4 terms beginning with 91 equal 182 - 273*x + 182*x^2 for x = 1..4.
		

Crossrefs

Sequence A241200 gives the position of the first of the 4 terms. Sequence A008865 gives the terms greater than 2 for which 3 consecutive terms satisfy a linear relation.
A014206 is a related sequence. - Avi Friedlich, Apr 28 2015
Cf. A062730 (3 terms in arithmetic progression in Pascal's triangle).

Programs

  • Maple
    map(k -> (3*k^2+8*k+3,3*k^2+10*k+6),[$1..100]); # Robert Israel, Apr 28 2015
  • Mathematica
    Select[Range[2500], MemberQ[Differences[Binomial[#, Range[0, #/2]], 3], 0] &]
    LinearRecurrence[{1,2,-2,-1,1},{14,19,31,38,54},50] (* Harvey P. Dale, Oct 29 2017 *)
  • PARI
    Vec(-x*(6*x^4-3*x^3-16*x^2+5*x+14)/((x-1)^3*(x+1)^2) + O(x^100)) \\ Colin Barker, Apr 29 2015
    
  • PARI
    a(n)=(6*n^2+42*n+55-(-1)^n*(2*n+7))/8 \\ Charles R Greathouse IV, Apr 15 2016

Formula

a(n) = (55-7*(-1)^n-2*(-21+(-1)^n)*n+6*n^2)/8. G.f.: -x*(6*x^4-3*x^3-16*x^2+5*x+14) / ((x-1)^3*(x+1)^2). - Colin Barker, Apr 18 2014 and Apr 29 2015
The terms appear to satisfy a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), with initial terms 14, 19, 31, 38, 54. - T. D. Noe, Apr 18 2014
Numbers are of the form A200182(3n+1) and A200182(3n-1). - Avi Friedlich, Apr 25 2015
a(2*k-1) = 3*k^2 + 8*k + 3, a(2*k) = 3*k^2 + 10*k + 6. - Robert Israel, Apr 28 2015