A240826 Number of ways to choose three points on a centered hexagonal grid of size n.
0, 35, 969, 7770, 35990, 121485, 333375, 790244, 1679580, 3280455, 5989445, 10349790, 17083794, 27128465, 41674395, 62207880, 90556280, 128936619, 180007425, 246923810, 333395790, 443749845, 582993719, 756884460, 971999700, 1235812175, 1556767485, 1944365094
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Hex Number.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Maple
seq(binomial(3*n^2-3*n+1, 3), n=1..28); # Martin Renner, May 31 2014 op(PolynomialTools[CoefficientList](convert(series(-x^2*(35*x^4+724*x^3+1722*x^2+724*x+35)/(x-1)^7, x=0, 29), polynom), x)[2..29]); # Martin Renner, May 31 2014
-
Mathematica
CoefficientList[Series[- x(35 x^4 + 724 x^3 + 1722 x^2 + 724 x + 35)/(x - 1)^7, {x, 0, 50}], x] (* Vincenzo Librandi, Apr 19 2014 *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,35,969,7770,35990,121485,333375},40] (* Harvey P. Dale, Sep 12 2019 *)
Formula
a(n) = binomial(A003215(n-1), 3)
= binomial(3*n^2-3*n+1, 3)
= 1/2*n*(n-1)*(3*n^2-3*n+1)*(3*n^2-3*n-1)
= 9/2*n^6-27/2*n^5+27/2*n^4-9/2*n^3-1/2*n^2+1/2*n.
G.f.: -x^2*(35*x^4+724*x^3+1722*x^2+724*x+35) / (x-1)^7. - Colin Barker, Apr 18 2014
Sum_{n>=2} 1/a(n) = sqrt(3/7)*Pi*tan(sqrt(7/3)*Pi/2) + sqrt(3)*Pi*tanh(Pi/(2*sqrt(3))) - 2. - Amiram Eldar, Feb 17 2024
Comments