A241063 Number of partitions p of n into distinct parts such that max(p) = 3*min(p).
0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 2, 1, 0, 1, 3, 2, 1, 1, 3, 2, 2, 3, 4, 3, 3, 5, 4, 5, 5, 7, 7, 7, 7, 7, 9, 10, 10, 11, 13, 14, 14, 14, 15, 17, 19, 22, 24, 23, 24, 28, 28, 31, 32, 36, 39, 42, 43, 46, 49, 53, 56, 59, 65, 68, 73, 77, 81, 87, 92
Offset: 0
Examples
a(12) counts these 2 partitions: 93, 642.
Programs
-
Mathematica
z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; Table[Count[f[n], p_ /; Max[p] == 2*Min[p]], {n, 0, z}] (* A241035 *) Table[Count[f[n], p_ /; Max[p] == 3*Min[p]], {n, 0, z}] (* A241063 *) Table[Count[f[n], p_ /; Max[p] == 4*Min[p]], {n, 0, z}] (* A241069 *) Table[Count[f[n], p_ /; Max[p] == 5*Min[p]], {n, 0, z}] (* A241272 *) Table[Count[f[n], p_ /; Max[p] == 6*Min[p]], {n, 0, z}] (* A241273 *)