cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A241063 Number of partitions p of n into distinct parts such that max(p) = 3*min(p).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 2, 1, 0, 1, 3, 2, 1, 1, 3, 2, 2, 3, 4, 3, 3, 5, 4, 5, 5, 7, 7, 7, 7, 7, 9, 10, 10, 11, 13, 14, 14, 14, 15, 17, 19, 22, 24, 23, 24, 28, 28, 31, 32, 36, 39, 42, 43, 46, 49, 53, 56, 59, 65, 68, 73, 77, 81, 87, 92
Offset: 0

Views

Author

Clark Kimberling, Apr 18 2014

Keywords

Examples

			a(12) counts these 2 partitions:  93, 642.
		

Crossrefs

Programs

  • Mathematica
    z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
        Table[Count[f[n], p_ /; Max[p] == 2*Min[p]], {n, 0, z}] (* A241035 *)
        Table[Count[f[n], p_ /; Max[p] == 3*Min[p]], {n, 0, z}] (* A241063 *)
        Table[Count[f[n], p_ /; Max[p] == 4*Min[p]], {n, 0, z}] (* A241069 *)
        Table[Count[f[n], p_ /; Max[p] == 5*Min[p]], {n, 0, z}] (* A241272 *)
        Table[Count[f[n], p_ /; Max[p] == 6*Min[p]], {n, 0, z}] (* A241273 *)

A241272 Number of partitions p of n into distinct parts such that max(p) = 5*min(p).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 0, 2, 1, 1, 2, 2, 2, 3, 3, 4, 6, 5, 5, 7, 7, 9, 11, 10, 11, 12, 12, 14, 18, 18, 18, 21, 21, 24, 27, 30, 30, 36, 37, 42, 47, 49, 54, 60, 64, 71, 81, 83, 91, 100, 107, 116, 129, 136, 147, 159, 172, 184, 200, 213, 228
Offset: 0

Views

Author

Clark Kimberling, Apr 18 2014

Keywords

Examples

			a(12) counts these 2 partitions:  {10,2}, {5,4,2,1}.
		

Crossrefs

Programs

  • Mathematica
    z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
    Table[Count[f[n], p_ /; Max[p] == 2*Min[p]], {n, 0, z}] (* A241035 *)
    Table[Count[f[n], p_ /; Max[p] == 3*Min[p]], {n, 0, z}] (* A241063 *)
    Table[Count[f[n], p_ /; Max[p] == 4*Min[p]], {n, 0, z}] (* A241069 *)
    Table[Count[f[n], p_ /; Max[p] == 5*Min[p]], {n, 0, z}] (* A241272 *)
    Table[Count[f[n], p_ /; Max[p] == 6*Min[p]], {n, 0, z}] (* A241273 *)

A241273 Number of partitions p of n into distinct parts such that max(p) = 6*min(p).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 2, 1, 3, 1, 2, 2, 2, 2, 1, 4, 2, 3, 3, 5, 5, 6, 8, 8, 9, 10, 13, 14, 16, 18, 20, 20, 24, 25, 28, 31, 36, 37, 40, 42, 46, 51, 55, 62, 65, 72, 76, 83, 89, 98, 107, 117, 126, 139, 149, 163, 177, 195, 208, 226, 247, 267, 291
Offset: 0

Views

Author

Clark Kimberling, Apr 18 2014

Keywords

Examples

			a(14) counts these 3 partitions:  {12,2}, {6,5,2,1}, {6,4,3,1}.
		

Crossrefs

Programs

  • Mathematica
    z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
    Table[Count[f[n], p_ /; Max[p] == 2*Min[p]], {n, 0, z}] (* A241035 *)
    Table[Count[f[n], p_ /; Max[p] == 3*Min[p]], {n, 0, z}] (* A241063 *)
    Table[Count[f[n], p_ /; Max[p] == 4*Min[p]], {n, 0, z}] (* A241069 *)
    Table[Count[f[n], p_ /; Max[p] == 5*Min[p]], {n, 0, z}] (* A241272 *)
    Table[Count[f[n], p_ /; Max[p] == 6*Min[p]], {n, 0, z}] (* A241273 *)
Showing 1-3 of 3 results.