cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241275 a(n) = 6*a(n-1) + 5*(2^(n-1)-1) for n > 0, a(0) = 0.

Original entry on oeis.org

0, 0, 5, 45, 305, 1905, 11585, 69825, 419585, 2518785, 15115265, 90696705, 544190465, 3265163265, 19591020545, 117546205185, 705277394945, 4231664697345, 25389988839425, 152339934347265, 914039608705025, 5484237657473025, 32905425955323905, 197432555752914945, 1184595334559432705, 7107572007440482305
Offset: 0

Views

Author

Kival Ngaokrajang, Apr 18 2014

Keywords

Comments

a(n) is the total number of holes in a pentaflake after n iterations. The number of irregular polygon-shaped holes is 5*A016200(n-3), n >= 3. The number of rhombic-shaped holes is 5*A016129(n-2), n >= 2 and equal to the first difference of a(n).

Crossrefs

Programs

  • Maple
    A241275:=n->9*6^(n-2) - 5*2^(n-2) + 1; seq(A241275(n), n=0..40); # Wesley Ivan Hurt, Apr 19 2014
  • Mathematica
    CoefficientList[Series[-5 x^2/((x - 1) (2 x - 1) (6 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Apr 19 2014 *)
    LinearRecurrence[{9,-20,12},{0,0,5},30] (* Harvey P. Dale, Oct 10 2017 *)
  • PARI
    a(n)=if(n<=0, 0, a(n-1)*6+5*(2^(n-1)-1))
           for(n=0, 100, print1(a(n),", "))

Formula

a(n) = 5*(A016129(n-2) + A016200(n-3)) for n >= 3, a(0)=a(1)=0, a(2)=5.
a(n) = 5*A016200(n-2) for n >= 2.
a(n) = 9*6^(n-2) - 5*2^(n-2) + 1.
a(n) = (4-5*2^n+6^n)/4. G.f.: -5*x^2 / ((x-1)*(2*x-1)*(6*x-1)). - Colin Barker, Apr 18 2014

Extensions

Typo in DATA fixed by Colin Barker, Apr 18 2014