A241484 Primes p such that p+2 and p+4 are semiprime.
2, 31, 47, 53, 83, 89, 139, 157, 181, 199, 211, 233, 263, 317, 337, 389, 409, 443, 449, 467, 541, 577, 587, 631, 677, 683, 719, 751, 787, 811, 839, 919, 947, 991, 1039, 1097, 1117, 1163, 1187, 1201, 1259, 1367, 1381, 1399, 1559, 1637, 1669, 1709, 1759, 1777, 1847
Offset: 1
Keywords
Examples
31 is prime and appears in the sequence because 31+2 = 33 = 3*11 and 31+4 = 35 = 5*7, which are semiprime. 53 is prime and appears in the sequence because 53+2 = 55 = 5*11 and 53+4 = 57 = 3*19, which are semiprime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..10000
Programs
-
Magma
IsSemiprime:=func< p | &+[ k[2]: k in Factorization(p)] eq 2 >; [p: p in PrimesUpTo(2000)| IsSemiprime(p+2) and IsSemiprime(p+4)]; // Vincenzo Librandi, Apr 24 2014
-
Maple
with(numtheory): KD:= proc() local a,b,d,k; k:=ithprime(n); a:=bigomega(k+2);b:=bigomega(k+4); if a=2 and b=2 then RETURN (k); fi; end: seq(KD(), n=1..1000);
-
Mathematica
KD = {}; Do[t = Prime[n];If[PrimeOmega[t + 2] == 2 && PrimeOmega[t + 4] == 2,AppendTo[KD, t]], {n, 1000}]; KD