A241519 Denominators of b(n) = b(n-1)/2 + 1/(2*n), b(0)=0.
1, 2, 2, 12, 3, 15, 60, 840, 105, 630, 630, 13860, 6930, 180180, 360360, 144144, 9009, 306306, 306306, 11639628, 14549535, 14549535, 58198140, 2677114440, 334639305, 3346393050
Offset: 0
Keywords
Examples
0, 1/2, 1/2, 5/12, 1/3, 4/15, 13/60, 151/840, 16/105, 83/630, 73/630, ... b(1) = (0+1)/2, hence a(1)=2. b(2) = (1/2+1/2)/2 = 1/2, hence a(2)=2. b(3) = (1/2+1/3)/2 = 5/12, hence a(3)=12.
Programs
-
Mathematica
b[0] = 0; b[n_] := b[n] = 1/2*(b[n-1] + 1/n); Table[b[n] // Denominator, {n, 0, 25}] (* Jean-François Alcover, Apr 25 2014 *) Table[-Re[LerchPhi[2, 1, n + 1]], {n, 0, 20}] // Denominator (* Eric W. Weisstein, Dec 11 2017 *) -Re[LerchPhi[2, 1, Range[20]]] // Denominator (* Eric W. Weisstein, Dec 11 2017 *) RecurrenceTable[{b[n] == b[n - 1]/2 + 1/(2 n), b[0] == 0}, b[n], {n, 20}] // Denominator (* Eric W. Weisstein, Dec 11 2017 *)
Formula
b(n) = -Re(Phi(2, 1, n + 1)) where Phi denotes the Lerch transcendent. - Eric W. Weisstein, Dec 11 2017
Extensions
Extension, after a(13), from Jean-François Alcover, Apr 24 2014
Comments