cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241519 Denominators of b(n) = b(n-1)/2 + 1/(2*n), b(0)=0.

Original entry on oeis.org

1, 2, 2, 12, 3, 15, 60, 840, 105, 630, 630, 13860, 6930, 180180, 360360, 144144, 9009, 306306, 306306, 11639628, 14549535, 14549535, 58198140, 2677114440, 334639305, 3346393050
Offset: 0

Views

Author

Paul Curtz, Apr 24 2014

Keywords

Comments

Generally, 2*b(n) = b(n-1) + f(n). See, for f(n)=n, A000337(n)/2^n.
a(0)=1. b(n) is mentioned in A241269.
Difference table of b(n):
0, 1/2, 1/2, 5/12, 1/3, 4/15, ...
1/2, 0, -1/12, -1/12, -1/15, -1/20, ...
-1/2, -1/12, 0, 1/60, 1/60, 11/840, ...
5/12, 1/12, 1/60, 0, -1/280, -1/280, ...
etc.
b(n) is mentioned in A241269 as an autosequence of the first kind.
The denominators of the first two upper diagonals are the positive Apéry numbers, A005430(n+1). Compare to the array in A003506.
Numerators: 0, 1, 1, 5, 1, 4, 13, 151, 16, 83, 73, 1433, 647, 15341, ... .

Examples

			0, 1/2, 1/2, 5/12, 1/3, 4/15, 13/60, 151/840, 16/105, 83/630, 73/630, ...
b(1) = (0+1)/2, hence a(1)=2.
b(2) = (1/2+1/2)/2 = 1/2, hence a(2)=2.
b(3) = (1/2+1/3)/2 = 5/12, hence a(3)=12.
		

Crossrefs

Cf. A086466.
Cf. A242376 (numerators).

Programs

  • Mathematica
    b[0] = 0; b[n_] := b[n] = 1/2*(b[n-1] + 1/n); Table[b[n] // Denominator, {n, 0, 25}] (* Jean-François Alcover, Apr 25 2014 *)
    Table[-Re[LerchPhi[2, 1, n + 1]], {n, 0, 20}] // Denominator (* Eric W. Weisstein, Dec 11 2017 *)
    -Re[LerchPhi[2, 1, Range[20]]] // Denominator (* Eric W. Weisstein, Dec 11 2017 *)
    RecurrenceTable[{b[n] == b[n - 1]/2 + 1/(2 n), b[0] == 0}, b[n], {n, 20}] // Denominator (* Eric W. Weisstein, Dec 11 2017 *)

Formula

b(n) = -Re(Phi(2, 1, n + 1)) where Phi denotes the Lerch transcendent. - Eric W. Weisstein, Dec 11 2017

Extensions

Extension, after a(13), from Jean-François Alcover, Apr 24 2014