A241528 Primes p such that p + 1234567890 is also prime where 1234567890 is the first pandigital number with digits in order.
17, 23, 37, 59, 131, 139, 157, 199, 241, 311, 353, 359, 397, 433, 479, 547, 673, 691, 769, 877, 937, 947, 953, 1051, 1091, 1097, 1181, 1297, 1301, 1409, 1451, 1471, 1489, 1531, 1609, 1619, 1697, 1709, 1861, 1879, 1889, 1913, 1951, 2053, 2063, 2089, 2099, 2113
Offset: 1
Keywords
Examples
17 is prime and appears in the sequence because 17 + 1234567890 = 1234567907, which is also prime. 23 is prime and appears in the sequence because 23 + 1234567890 = 1234567913, which is also prime. 19 is prime but not included in the sequence since 19 + 1234567890 = 1234567909 = (59107)*(20887), which is not prime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..10000
Programs
-
Maple
KD := proc() local a,k; k:=ithprime(n);a:=k+1234567890; if isprime(a) then RETURN (k); fi; end: seq(KD(), n=1..1000);
-
Mathematica
lst={}; Do[p=Prime[n]; If[PrimeQ[p+1234567890], AppendTo[lst,p]],{n,1,1000}]; lst (* For the b-file *) c=0; k=Prime[n]; a=k+1234567890; Do[If[PrimeQ[a], c++; Print[c," ",k]],{n,1,10^5}] Select[Prime[Range[400]],PrimeQ[#+1234567890]&] (* Harvey P. Dale, Nov 18 2021 *)
-
PARI
s=[]; forprime(p=2, 3000, if(isprime(p+1234567890), s=concat(s, p))); s \\ Colin Barker, Apr 25 2014