A241536 Smallest k>=1 such that prime(n)+k and prime(n)-k are both semiprimes, or a(n)=0 if there is no such k.
0, 0, 1, 3, 0, 9, 8, 15, 2, 4, 27, 2, 8, 8, 8, 2, 10, 4, 2, 6, 4, 14, 28, 2, 32, 10, 8, 12, 14, 2, 6, 2, 4, 6, 6, 8, 2, 20, 34, 4, 24, 4, 14, 8, 12, 14, 2, 14, 8, 8, 14, 20, 6, 2, 8, 4, 20, 18, 10, 14, 16, 2, 2, 8, 8, 12, 4, 2, 8, 22, 12, 18, 26, 8, 2, 12, 18
Offset: 1
Keywords
Programs
-
Mathematica
sks[n_]:=Module[{k=1,p=Prime[n]},While[PrimeOmega[p+k]!=2||PrimeOmega[p-k]!=2||p-k<4,If[p-k<3,Break[]];k++];If[p-k<4,0,k]]; Array[sks,80] (* Harvey P. Dale, Dec 09 2016 *)
-
PARI
a(n) = {p = prime(n); for (k=1, p-1, if ((bigomega(p-k)==2) && (bigomega(p+k) == 2), return (k));); return (0);} \\ Michel Marcus, Apr 25 2014
Extensions
More terms from Michel Marcus, Apr 25 2014
Name edited by Michel Marcus, Mar 26 2015
Comments