A280779
Denominators of coefficients in asymptotic expansion of M_n (number of monolithic chord diagrams, A280775).
Original entry on oeis.org
1, 1, 1, 3, 3, 5, 45, 315, 35, 567, 2025, 7425, 467775, 6081075, 257985, 638512875, 638512875, 172297125, 13956067125, 74246277105, 3093594879375, 14992036723125, 2143861251406875, 16436269594119375, 4226469324202125, 48028060502296875, 593531957565421875, 56437147443285984375
Offset: 0
Coefficients are 1, -4,-6, -154/3, -1610/3, -34588/5, -4666292/45, -553625626/315, -1158735422/35, ...
-
A000699_seq(N) = {
my(a = vector(N)); a[1] = 1;
for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a;
};
seq(N) = {
my(M = subst(x*Ser(A000699_seq(N)), x, x/(1-x)^2));
Vec(x/(1-x)*exp(1-x/2-(1-x)^2/(2*x)*(2*M + M^2))/M);
};
apply(numerator, seq(18)) \\ Gheorghe Coserea, Jan 22 2017
A248592
Denominators of the (simplified) rational numbers n*2^(n - 1)/(n - 1)! .
Original entry on oeis.org
1, 1, 1, 3, 3, 5, 45, 315, 35, 567, 14175, 51975, 467775, 868725, 2837835, 638512875, 638512875, 1206079875, 97692469875, 371231385525, 441942125625, 17717861581875, 2143861251406875, 16436269594119375, 5917057053882975, 284473896821296875, 1780595872696265625
Offset: 1
Has same start as
A241591 but is a different sequence.
A241590
Numerators of Postnikov's hook-length formula 2^n*(n+1)^(n-1)/n!.
Original entry on oeis.org
1, 2, 6, 64, 250, 1728, 67228, 2097152, 1062882, 80000000, 9431790764, 6115295232, 7168641576148, 64793042714624, 2562890625000, 1152921504606846976, 5724846103019631586, 666334875701477376, 21921547431139208743756, 16777216000000000000000, 164839190645167033716, 513039635408293850333052928
Offset: 0
1, 2, 6, 64/3, 250/3, 1728/5, 67228/45, 2097152/315, 1062882/35, 80000000/567, 9431790764/14175, 6115295232/1925, 7168641576148/467775, ...
- Alexander Postnikov. Permutohedra, associahedra, and beyond. in: Conference in Honor of Richard Stanley's Sixtieth Birthday, June 2004. International Mathematics Research Notices, 6:1026-1106, 2009.
-
t1:= [seq(2^n*(n+1)^(n-1)/n!,n=0..50)]:
t2:=map(numer, t1); # A241590
t3:=map(denom, t1); # A241591
-
Join[{1},Table[(2^n (n+1)^(n-1))/n!,{n,30}]//Numerator] (* Harvey P. Dale, Feb 23 2023 *)
-
vector(30, n, n--; numerator(2^n*(n+1)^(n-1)/n!)) \\ Michel Marcus, Jul 18 2015
Showing 1-3 of 3 results.
Comments