cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A280779 Denominators of coefficients in asymptotic expansion of M_n (number of monolithic chord diagrams, A280775).

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 45, 315, 35, 567, 2025, 7425, 467775, 6081075, 257985, 638512875, 638512875, 172297125, 13956067125, 74246277105, 3093594879375, 14992036723125, 2143861251406875, 16436269594119375, 4226469324202125, 48028060502296875, 593531957565421875, 56437147443285984375
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2017

Keywords

Comments

This has the same start as two other sequences, A241591 and A248592, but appears to be different from both.

Examples

			Coefficients are 1, -4,-6, -154/3, -1610/3, -34588/5, -4666292/45, -553625626/315, -1158735422/35, ...
		

Crossrefs

Programs

  • PARI
    A000699_seq(N) = {
      my(a = vector(N)); a[1] = 1;
      for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a;
    };
    seq(N) = {
      my(M = subst(x*Ser(A000699_seq(N)), x, x/(1-x)^2));
      Vec(x/(1-x)*exp(1-x/2-(1-x)^2/(2*x)*(2*M + M^2))/M);
    };
    apply(numerator, seq(18))  \\ Gheorghe Coserea, Jan 22 2017

A248592 Denominators of the (simplified) rational numbers n*2^(n - 1)/(n - 1)! .

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 45, 315, 35, 567, 14175, 51975, 467775, 868725, 2837835, 638512875, 638512875, 1206079875, 97692469875, 371231385525, 441942125625, 17717861581875, 2143861251406875, 16436269594119375, 5917057053882975, 284473896821296875, 1780595872696265625
Offset: 1

Views

Author

James Burling, Oct 09 2014

Keywords

Crossrefs

Cf. A248591 (numerators).
Has same start as A241591 but is a different sequence.

Programs

  • Maple
    A248592 := proc(n)
        n*2^(n-1)/(n-1)! ;
        denom(%) ;
    end proc:
    seq(A248592(n),n=1..30) ; # R. J. Mathar, Oct 10 2014
  • PARI
    vector(40, n, denominator(n*2^(n - 1)/(n - 1)!)) \\ Michel Marcus, Oct 09 2014

Formula

a(n) = denom(n * 2^(n - 1) / (n - 1)!).
a(n) = denom(g(1, n)) where g(m, n) = m if m = n; 2g(m + 1, n)/m otherwise.

Extensions

More terms from Michel Marcus, Oct 09 2014

A241590 Numerators of Postnikov's hook-length formula 2^n*(n+1)^(n-1)/n!.

Original entry on oeis.org

1, 2, 6, 64, 250, 1728, 67228, 2097152, 1062882, 80000000, 9431790764, 6115295232, 7168641576148, 64793042714624, 2562890625000, 1152921504606846976, 5724846103019631586, 666334875701477376, 21921547431139208743756, 16777216000000000000000, 164839190645167033716, 513039635408293850333052928
Offset: 0

Views

Author

N. J. A. Sloane, May 13 2014

Keywords

Examples

			1, 2, 6, 64/3, 250/3, 1728/5, 67228/45, 2097152/315, 1062882/35, 80000000/567, 9431790764/14175, 6115295232/1925, 7168641576148/467775, ...
		

References

  • Alexander Postnikov. Permutohedra, associahedra, and beyond. in: Conference in Honor of Richard Stanley's Sixtieth Birthday, June 2004. International Mathematics Research Notices, 6:1026-1106, 2009.

Crossrefs

Cf. A241591.

Programs

  • Maple
    t1:= [seq(2^n*(n+1)^(n-1)/n!,n=0..50)]:
    t2:=map(numer, t1); # A241590
    t3:=map(denom, t1); # A241591
  • Mathematica
    Join[{1},Table[(2^n (n+1)^(n-1))/n!,{n,30}]//Numerator] (* Harvey P. Dale, Feb 23 2023 *)
  • PARI
    vector(30, n, n--; numerator(2^n*(n+1)^(n-1)/n!)) \\ Michel Marcus, Jul 18 2015
Showing 1-3 of 3 results.