cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241663 Number of positive integers k less than or equal to n such that gcd(k,n) = gcd(k+1,n) = gcd(k+2,n) = gcd(k+3,n) = 1.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 3, 0, 0, 0, 7, 0, 9, 0, 0, 0, 13, 0, 15, 0, 0, 0, 19, 0, 5, 0, 0, 0, 25, 0, 27, 0, 0, 0, 3, 0, 33, 0, 0, 0, 37, 0, 39, 0, 0, 0, 43, 0, 21, 0, 0, 0, 49, 0, 7, 0, 0, 0, 55, 0, 57, 0, 0, 0, 9, 0, 63, 0, 0, 0, 67, 0, 69, 0, 0, 0, 21, 0, 75, 0, 0
Offset: 1

Views

Author

Colin Defant, Apr 26 2014

Keywords

Comments

a(n) is the 4th Schemmel totient function.

Examples

			a(35) = a(5)*a(7) = 1*3 = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[Boole[n == 1] + Count[Partition[Range@ n, 4, 1], _?(AllTrue[#, CoprimeQ[n, #] &] &)], {n, 81}] (* or *)
    Array[If[# == 1, 1, Apply[Times, FactorInteger[#] /. {p_, e_} /; p > 1 :> If[p > 3, (p - 4) p^(e - 1), 0]]] &, 81] (* Michael De Vlieger, Nov 05 2017 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, if ((f[i, 1] == 2) || (f[i, 1] == 3), 0, f[i, 1]^(f[i, 2]-1)*(f[i, 1]-4)));} \\ Michel Marcus, May 01 2014
    
  • Scheme
    ;; After the given multiplicative formula. Uses memoization-macro definec:
    (definec (A241663 n) (if (= 1 n) n (let ((p (A020639 n))) (if (<= p 3) 0 (* (- p 4) (expt p (- (A067029 n) 1)) (A241663 (A028234 n))))))) ;; Antti Karttunen, Nov 05 2017

Formula

Multiplicative with a(p^e) = p^(e-1)*(p-4) for p > 3. a(2^e) = a(3^e) = 0 for e > 0.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/6) * Product_{p prime >= 5} (1 - 4/p^2) = 0.11357982182683545733... . - Amiram Eldar, Oct 13 2022