A241746 Smallest number greater than n that CANNOT be scored using n darts on a standard dartboard.
23, 103, 163, 223, 283, 343, 403, 463, 523, 583, 643, 703, 763, 823, 883, 943, 1003, 1063, 1123, 1183, 1243, 1303, 1363, 1423, 1483, 1543, 1603, 1663, 1723, 1783, 1843, 1903, 1963, 2023, 2083, 2143, 2203, 2263, 2323, 2383, 2443, 2503, 2563, 2623, 2683, 2743
Offset: 1
Examples
a(6) = 403. All numbers from 5 - 342 can be scored using 5 darts. Thus, 60 (dart 1) + 342 (remaining 5 darts) = 402 -> The maximum score for 6 darts. - _David Consiglio, Jr._, Jun 11 2014
Links
- Wikipedia, Darts
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Mathematica
Join[{23},NestList[60+#&,103,60]] (* Harvey P. Dale, Sep 18 2020 *)
-
PARI
a(n) = 103 + 60*(n-2) - 20*!(n-1); \\ Jinyuan Wang, May 30 2021
Formula
a(1) = 23, remaining terms: a(n) = 103 + 60*(n-2). - David Consiglio, Jr., Jun 11 2014
From Jianing Song, Jan 22 2021: (Start)
G.f.: 17 - 20*x + (77*x-17)/(1-x)^2.
E.g.f.: 17 - 20*x + (60*x-17)*exp(x). (End)
Extensions
a(2)-a(4) from Colin Barker, May 19 2014
a(5)-a(11) from David Consiglio, Jr., Jun 12 2014
More terms from Harvey P. Dale, Sep 18 2020
Comments