A241946 Numbers n equal to the sum of all the four-digit numbers formed without repetition from the digits of n.
1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 2002, 2112, 2222, 2332, 2442, 2552, 2662, 2772, 2882, 2992, 3003, 3113, 3223, 3333, 3443, 3553, 3663, 3773, 3883, 3993, 4004, 4114, 4224, 4334, 4444, 4554, 4664, 4774, 4884, 4994, 5005, 5115, 5225
Offset: 1
Examples
37323 is in the sequence because 37323 = 2373 + 3233 + 3237 + 3273 + 3323 + 3373 + 3723 + 3732 + 3733 + 7323.
Links
- Michel Lagneau, Table of n, a(n) for n = 1..93
Crossrefs
Cf. A241899.
Programs
-
Maple
with(numtheory): for n from 1000 to 10000 do: lst:={}:k:=0:x:=convert(n,base,10):n1:=nops(x): for i from 1 to n1 do: for j from i+1 to n1 do: for m from j+1 to n1 do: for q from m+1 to n1 do: lst:=lst union {x[i]+10*x[j]+100*x[m]+1000*x[q]}: od: od: od: od: for a from n1 by -1 to 1 do: for b from a-1 by -1 to 1 do: for c from b-1 by -1 to 1 do: for d from c-1 by -1 to 1 do: lst:=lst union {x[a]+10*x[b]+100*x[c]+1000*x[d]}: od: od: od: od: n2:=nops(lst):s:=sum('lst[i]', 'i'=1..n2): if s=n then printf(`%d, `,n): else fi: od:
Comments