cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241980 Number of endofunctions on [n] where all cycle lengths are equal.

Original entry on oeis.org

1, 1, 4, 24, 206, 2300, 31742, 522466, 9996478, 218088504, 5344652492, 145386399554, 4347272984936, 141737636485588, 5004538251283846, 190247639729155110, 7747479351505166738, 336492490519027631984, 15526758954835131888980, 758548951300064645742034
Offset: 0

Views

Author

Alois P. Heinz, Aug 10 2014

Keywords

Crossrefs

Cf. A005225, A061356, A212789, A242027 (column k=1).
Row sums of A243098.

Programs

  • Maple
    with(numtheory):
    b:= n-> `if`(n=0, 1, n!*add((d!*(n/d)^d)^(-1), d=divisors(n))):
    a:= n-> add(binomial(n-1, j-1)*n^(n-j)*b(j), j=0..n):
    seq(a(n), n=0..25);
  • Mathematica
    nn=20;t[x_]:=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[Series[1+Sum[Exp[t[x]^i/i]-1,{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Aug 11 2014 *)

Formula

a(n) = Sum_{j=0..n} C(n-1,j-1) * n^(n-j) * A005225(j).
a(n) = Sum_{k=0..n} A243098(n,k).