cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242112 a(n) = floor((2*n+6)/(5-(-1)^n)).

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 6, 9, 6, 10, 7, 11, 8, 12, 8, 13, 9, 14, 10, 15, 10, 16, 11, 17, 12, 18, 12, 19, 13, 20, 14, 21, 14, 22, 15, 23, 16, 24, 16, 25, 17, 26, 18, 27, 18, 28, 19, 29, 20, 30, 20, 31, 21, 32, 22, 33, 22, 34, 23, 35, 24, 36
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 21 2014

Keywords

Crossrefs

Programs

  • Magma
    [Floor((2*n+6)/(5-(-1)^n)) : n in [0..100]];
    
  • Magma
    [IsEven(n) select 1+n/2 else 1+Floor(n/3): n in [0..80]]; // Bruno Berselli, Aug 22 2014
  • Maple
    A242112:=n->floor((2*n+6)/(5-(-1)^n)): seq(A242112(n), n=0..100);
  • Mathematica
    Table[Floor[(2 n + 6)/(5 - (-1)^n)], {n, 0, 100}]
    LinearRecurrence[{0,1,0,0,0,1,0,-1},{1,1,2,2,3,2,4,3},80] (* Harvey P. Dale, Oct 24 2017 *)

Formula

a(n) = a(n-2) + a(n-6) - a(n-8).
a(n) = ( n+3 - A093718(n) ) / A010693(n).
From Robert Israel, Aug 22 2014: (Start)
a(n) = sqrt(3)/18*(sin(2*n*Pi/3)+sin(n*Pi/3)) + 1/6*(cos(2*n*Pi/3)-cos(n*Pi/3)) + (-1)^n*(2+n)/12 + 5*(n+2)/12.
G.f.: (1 + x + x^2 + x^3 + x^4)/(1 - x^2 - x^6 + x^8). (End)
a(n) = 1 + n/2 if n is even, otherwise a(n) = 1 + floor(n/3). - Bruno Berselli, Aug 22 2014