A242167 Number of length n binary words that contain 000 and 001 and 010 and 011 and 100 and 101 and 110 and 111 as contiguous subsequences. The 3 letter subsequences are allowed to overlap.
16, 80, 298, 934, 2632, 6890, 17118, 40908, 94884, 214956, 477922, 1046544, 2263228, 4843834, 10277132, 21645226, 45303842, 94314954, 195443594, 403391590, 829703588, 1701379556, 3479560910, 7099569872, 14455857024, 29380784736, 59618421994, 120801765892
Offset: 10
Examples
a(10) = 16 because we have: 0001011100, 0001110100, 0010111000, 0011101000, 0100011101, 0101110001, 0111000101, 0111010001, 1000101110, 1000111010, 1010001110, 1011100010, 1100010111, 1101000111, 1110001011, 1110100011.
Links
- Alois P. Heinz, Table of n, a(n) for n = 10..1000
- Eric Weisstein's World of Mathematics, Coin Tossing
- Index entries for linear recurrences with constant coefficients, signature (10, -41, 89, -114, 99, -58, -30, 120, -121, 109, -97, 20, -20, 37, 33, -17, 20, -66, 9, -9, 21, 21, -3, 0, -11, -2, -1, 1, 2).
Programs
-
Mathematica
(* about 5 minutes of run time required *) s=Tuples[{T,H},3]; t=Table[Total[Table[Total[z^Flatten[Position[Table[Take[s[[n]], 3-i]===Drop[s[[m]],i],{i,0,2}], True]-1]],{m,1,8}]*{a,b,c,d,e,f,g,h}],{n,1,8}]; sol=Solve[{a==va(z^3+t[[1]]-a),b==vb(z^3+t[[2]]-b),c==vc(z^3+t[[3]]-c), d==vd(z^3+t[[4]]-d),e==ve(z^3+t[[5]]-e), f==vf(z^3+t[[6]]-f),g==vg(z^3+t[[7]]-g),h==vh(z^3+t[[8]]-h)},{a,b,c,d,e,f,g,h}]; S=1/(1-2z-a-b-c-d-e-f-g-h); vsub={va->ua-1,vb->ub-1,vc->uc-1,vd->ud-1,ve->ue-1,vf->uf-1,vg->ug-1,vh->uh-1}; Fz[ua_,ub_,uc_,ud_,ue_,uf_,ug_,uh_]=Simplify[S/.sol/.vsub]; tn=Table[Total[Map[Apply[Fz,#]&,Select[Tuples[{0,1},8],Count[#,0]==n&]]],{n,1,8}]; Drop[Flatten[CoefficientList[Series[1/(1-2z)-Simplify[tn[[1]] -tn[[2]] +tn[[3]]-tn[[4]]+tn[[5]]-tn[[6]]+tn[[7]]-tn[[8]]],{z,0,40}],z]],10]
Formula
G.f.: -2*x^10 *(2*x^23 +5*x^22 +9*x^21 +12*x^20 +14*x^19 -13*x^17 -19*x^16 -41*x^15 -6*x^14 -18*x^13 +33*x^12 +32*x^11 -6*x^10 +91*x^9 -111*x^8 +32*x^7 -8*x^6 -61*x^5 +107*x^4 -95*x^3 +77*x^2 -40*x +8) / ((2*x-1) *(x+1) *(x^2+1) *(x^2+x-1) *(x^3-x^2+2*x-1) *(x^3+x^2-1) *(x^3+x^2+x-1) *(x^4+x-1) *(x^4+x^3-1) *(x^3+x-1) *(x-1)^3). - Alois P. Heinz, May 07 2014
Comments