A242215 a(n) = 18*n + 5.
5, 23, 41, 59, 77, 95, 113, 131, 149, 167, 185, 203, 221, 239, 257, 275, 293, 311, 329, 347, 365, 383, 401, 419, 437, 455, 473, 491, 509, 527, 545, 563, 581, 599, 617, 635, 653, 671, 689, 707, 725, 743, 761, 779, 797, 815, 833, 851, 869, 887, 905, 923, 941, 959
Offset: 0
Links
- Wikipedia, Fermat number.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Magma
[18*n+5: n in [0..53]];
-
Maple
seq(18*n+5, n=0..53);
-
Mathematica
Table[18*n + 5, {n, 0, 53}] LinearRecurrence[{2,-1},{5,23},60] (* Harvey P. Dale, Aug 25 2017 *)
-
PARI
for(n=0, 53, print1(18*n+5, ", "));
Formula
G.f.: (5 + 13*x)/(1 - x)^2.
From Elmo R. Oliveira, Dec 08 2024: (Start)
E.g.f.: exp(x)*(5 + 18*x).
a(n) = 2*a(n-1) - a(n-2) for n > 1. (End)
Comments