cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A163635 a(n) = 3*A022004(n) + 8.

Original entry on oeis.org

23, 41, 59, 131, 311, 329, 581, 689, 941, 1049, 1391, 1931, 2471, 2579, 2651, 3281, 3839, 3911, 4289, 4451, 4469, 4829, 5621, 5999, 6251, 6719, 6809, 7979, 8069, 9761, 10391, 10589, 11021, 11759, 12011, 12389, 13559, 13919, 14369, 14801
Offset: 1

Views

Author

Vincenzo Librandi, Aug 02 2009

Keywords

Comments

Sum of the members of the n-th prime triple (p, p+2, p+6).
All terms are congruent to 5 (mod 18). See A242215. - Robert Bilinski, Sep 24 2019

Examples

			23 is in the sequence because 23 = 5+7+11 = 3*5+8.
41 is in the sequence because 41 = 11+13+17 = 3*11+8.
		

Crossrefs

Programs

  • Magma
    [(3*p+8): p in PrimesUpTo(1000)| IsPrime(p+6) and IsPrime(p+2)]; // Vincenzo Librandi, Jan 06 2018
    
  • Mathematica
    8 + 3*Select[Prime[Range[1000]], PrimeQ[# + 2] && PrimeQ[# + 6] &] (* Vincenzo Librandi, Jan 04 2014 *)
  • PARI
    is(n)=n%18==5 && isprime(n\3-2) && isprime(n\3) && isprime(n\3+4) \\ Charles R Greathouse IV, Jan 06 2018

Formula

a(n) = A022004(n) + (A022004(n)+2) + (A022004(n)+6);
a(n) = A022004(n) + A073648(n) + A098412(n).

Extensions

Notation normalized by R. J. Mathar, Aug 07 2009

A350521 a(n) = 18*n + 4.

Original entry on oeis.org

4, 22, 40, 58, 76, 94, 112, 130, 148, 166, 184, 202, 220, 238, 256, 274, 292, 310, 328, 346, 364, 382, 400, 418, 436, 454, 472, 490, 508, 526, 544, 562, 580, 598, 616, 634, 652, 670, 688, 706, 724, 742, 760, 778, 796, 814, 832, 850, 868, 886, 904, 922, 940, 958
Offset: 0

Views

Author

Omar E. Pol, Jan 03 2022

Keywords

Comments

Second column of A006370 (the Collatz or 3x+1 map) when it is interpreted as a rectangular array with six columns read by rows.

Crossrefs

Programs

  • GAP
    List([0..53], n-> 18*n+4)
    
  • Magma
    [18*n+4: n in [0..53]];
    
  • Maple
    seq(18*n+4, n=0..53);
  • Mathematica
    Table[18n+4, {n, 0, 53}]
  • Maxima
    makelist(18*n+4, n, 0, 53);
    
  • PARI
    a(n)=18*n+4
    
  • Python
    [18*n+4 for n in range(53)]

Formula

a(n) = A242215(n) - 1.
a(n) = A298035(n+1) + 1.
From Elmo R. Oliveira, Apr 08 2024: (Start)
G.f.: 2*(2+7*x)/(1-x)^2.
E.g.f.: 2*exp(x)*(2 + 9*x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = 2*A017185(n) = A006370(A016921(n)). (End)
Showing 1-2 of 2 results.