cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A203798 E.g.f.: Sum_{n>=0} (1 - exp(-n^3*x))^n.

Original entry on oeis.org

1, 1, 127, 115027, 383578651, 3406562690251, 66363706916031547, 2491358400855491082427, 164269869314849711368915051, 17742882813152530090093631133451, 2973340319455184373850280909330520667, 740141055495168376026146815923984436993627
Offset: 0

Views

Author

Paul D. Hanna, Jan 09 2013

Keywords

Examples

			O.g.f.: F(x) = 1 + x + 127*x^2 + 115027*x^3 + 383578651*x^4 +...
where
F(x) = 1 + x/(1+x) + 2^6*2!*x^2/((1+2^3*1*x)*(1+2^3*2*x)) + 3^9*3!*x^3/((1+3^3*1*x)*(1+3^3*2*x)*(1+3^3*3*x)) + 4^12*4!*x^4/((1+4^3*1*x)*(1+4^3*2*x)*(1+4^3*3*x)*(1+4^3*4*x)) +...
...
E.g.f.: A(x) = 1 + x + 127*x^2/2! + 115027*x^3/3! + 383578651*x^4/4! +...
where
A(x) = 1 + (1-exp(-x)) + (1-exp(-2^3*x))^2 + (1-exp(-3^3*x))^3 + (1-exp(-4^3*x))^4 + (1-exp(-5^3*x))^5 + (1-exp(-6^3*x))^6 +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[(-1)^(n-k) * k^(3*n) * k! * StirlingS2[n,k], {k,0,n}], {n,1,20}]}] (* Vaclav Kotesovec, May 08 2014 *)
  • PARI
    {a(n)=n!*polcoeff(sum(k=0, n, (1-exp(-k^3*x+x*O(x^n)))^k), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff(sum(m=0, n, m^(3*m)*m!*x^m/prod(k=1, m, 1+m^3*k*x+x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = sum(k=0, n, (-1)^(n-k)*k^(3*n)*k!*stirling(n, k, 2))}
    for(n=0, 20, print1(a(n), ", "))

Formula

O.g.f.: Sum_{n>=0} n^(3*n) * n! * x^n / Product_{k=1..n} (1 + n^3*k*x).
a(n) = Sum_{k=0..n} (-1)^(n-k) * k^(3*n) * k! * Stirling2(n,k).
a(n) == 1 (mod 6) for n>=0.
a(n) ~ c * d^n * (n!)^4 / n^(3/2), where d = 19.56009813649729638637945621039407270230134093295681610091365833339628... and c = 0.068225708245494700607840778486121251627676796315... . - Vaclav Kotesovec, May 08 2014

A351134 a(n) = Sum_{k=0..n} k! * k^(3*n) * Stirling1(n,k).

Original entry on oeis.org

1, 1, 127, 115028, 383611414, 3407421330934, 66396378581670602, 2493320561997330821496, 164454446238949941359354760, 17769323863754938530919641304080, 2978930835291629440372517431365668448, 741834782450714229554166000654848368247568
Offset: 0

Views

Author

Seiichi Manyama, Feb 02 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[k! * k^(3*n) * StirlingS1[n, k], {k, 1, n}]; Array[a, 12, 0] (* Amiram Eldar, Feb 02 2022 *)
  • PARI
    a(n) = sum(k=0, n, k!*k^(3*n)*stirling(n, k, 1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, log(1+k^3*x)^k)))

Formula

E.g.f.: Sum_{k>=0} log(1 + k^3*x)^k.
a(n) ~ c * d^n * n^(4*n + 1/2), where d = 0.358437102792682941192966771107499325675345706113923587904567864366079667... and c = 2.68150179193269103258189978938660205530269361522513... - Vaclav Kotesovec, Feb 04 2022

A351117 a(n) = Sum_{k=0..n} k! * k^(k*n) * Stirling2(n,k).

Original entry on oeis.org

1, 1, 33, 118483, 103098350565, 35763050750177408011, 7426387531294259002278007386693, 1294894837982331421844458945612619053737859003, 253092742000650212461957357208907985560332648454746968725711765
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> add(k!*k^(k*n)*Stirling2(n,k), k=0..n):
    seq(a(n), n=0..10);  # Alois P. Heinz, Feb 01 2022
  • Mathematica
    a[0] = 1; a[n_] := Sum[k! * k^(k*n) * StirlingS2[n, k], {k, 1, n}]; Array[a, 9, 0] (* Amiram Eldar, Feb 02 2022 *)
  • PARI
    a(n) = sum(k=0, n, k!*k^(k*n)*stirling(n, k, 2));
    
  • PARI
    my(N=10, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (exp(k^k*x)-1)^k)))
    
  • PARI
    my(N=10, x='x+O('x^N)); Vec(sum(k=0, N, k!*(k^k*x)^k/prod(j=1, k, 1-k^k*j*x)))

Formula

E.g.f.: Sum_{k>=0} (exp(k^k*x) - 1)^k.
G.f.: Sum_{k>=0} k! * (k^k*x)^k/Product_{j=1..k} (1 - k^k*j*x).
a(n) ~ n! * n^(n^2). - Vaclav Kotesovec, Feb 04 2022
Showing 1-3 of 3 results.