cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A242576 Prime terms in A214828.

Original entry on oeis.org

13, 151, 277, 36313, 225949, 7129366889, 933784181621, 19397107178326126131136629644898891137047, 401151570474397232184569825031979125080583558010764826781295643008140597581801
Offset: 1

Views

Author

Robert Price, May 17 2014

Keywords

Comments

a(10) has 119 digits and thus is too large to display here. It corresponds to A214828(448).

Crossrefs

Programs

  • Mathematica
    a={1,6,6}; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]
    Select[LinearRecurrence[{1,1,1},{1,6,6},350],PrimeQ] (* Harvey P. Dale, Jul 21 2018 *)
  • PARI
    my(x='x+O('x^500)); select(isprime, Vec((1+5*x-x^2)/(1-x-x^2-x^3))) \\ Michel Marcus, Jun 16 2025

A243623 Prime terms in A214829.

Original entry on oeis.org

7, 29, 1087, 1999, 3677, 6763, 5487349608898607, 115507410616162687, 878001744429057971864287, 210582098197038415344728317608265501, 870277059555114378903885645581650740066907
Offset: 1

Views

Author

Robert Price, Jun 07 2014

Keywords

Comments

a(12) has 114 digits and thus is too large to display here. It corresponds to A214829(426).

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({a(n) = a(n-1) + a(n-2) + a(n-3), a(0) = 1, a(1) = 7, a(2) = 7},a(n),remember):
    select(isprime, map(f, [$2..1000])); # Robert Israel, Sep 02 2024
  • Mathematica
    a={1,7,7}; Print["7"]; Print["7"]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]

Extensions

7 inserted as a(1) by Robert Israel, Sep 02 2024

A246518 Prime terms in A141036.

Original entry on oeis.org

2, 11, 2713, 4066709, 289593761, 30236674150891013353640837416685668536004108580572237299601, 45323907186142905348893078704293178796516046414129798590935901
Offset: 1

Views

Author

Robert Price, Aug 28 2014

Keywords

Comments

a(8) has 91 digits and thus is too large to display here. It corresponds to A141036(482).
a(n) = A141036(A246517(n)).

Crossrefs

Programs

  • Haskell
    a246518 n = a246518_list !! (n-1)
    a246518_list = filter ((== 1) . a010051'') $ a141036_list
    -- Reinhard Zumkeller, Sep 15 2014
  • Mathematica
    a={2,1,1}; Print[2]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]

A244002 Prime terms in A214830.

Original entry on oeis.org

17, 199, 2273, 547609, 71724269, 131339891338466303, 31640376596545867021, 2253137772896035203743
Offset: 1

Views

Author

Robert Price, Jun 17 2014

Keywords

Comments

a(10) has 182 digits and thus is too large to display here. It corresponds to A214830(688).

Crossrefs

Programs

  • Mathematica
    a={1,8,8}; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]

A244931 Prime terms in A214831.

Original entry on oeis.org

19, 37, 223, 409, 53617, 23757289, 3111662089, 407556643177, 1372675688565303822697, 23548271681390871672120649, 1676892190264006259992141409, 64923481849284379431377700019
Offset: 1

Views

Author

Robert Price, Jul 08 2014

Keywords

Comments

a(13) has 58 digits and thus is too large to display here. It corresponds to A214831(216).

Crossrefs

Programs

  • Mathematica
    a={1,9,9}; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]

A242325 Prime terms in the tribonacci-like sequence A214827.

Original entry on oeis.org

5, 5, 11, 37, 127, 233, 1451, 4909, 9029, 16607, 103333, 37314473023, 232180447061, 2657194941637, 13356042204482014297297131147848321, 4717604056747741831285902446873182186115052544834224581062711115537322612895948580479
Offset: 1

Views

Author

Robert Price, May 10 2014

Keywords

Comments

a(17) is too large to display here having 133 digits. It corresponds to A214827(501).

Crossrefs

Programs

  • Mathematica
    a={1,5,5}; Print[5]; Print[5]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]
Showing 1-6 of 6 results.