cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242412 a(n) = (2*n-1)^2 + 14.

Original entry on oeis.org

15, 23, 39, 63, 95, 135, 183, 239, 303, 375, 455, 543, 639, 743, 855, 975, 1103, 1239, 1383, 1535, 1695, 1863, 2039, 2223, 2415, 2615, 2823, 3039, 3263, 3495, 3735, 3983, 4239, 4503, 4775, 5055, 5343, 5639, 5943, 6255, 6575, 6903, 7239, 7583, 7935, 8295, 8663, 9039, 9423, 9815
Offset: 1

Views

Author

Aaron David Fairbanks, May 13 2014

Keywords

Comments

The previous definition was "a(n) = normalized inverse radius of the inscribed circle that is tangent to the left circle of the symmetric arbelos and the n-th and (n-1)-st circles in the Pappus chain".
See links section for image of these circles, via Wolfram MathWorld (there an asymmetric arbelos is shown).
The Rothman-Fukagawa article has another picture of the circles, based on a Japanese 1788 sangaku problem. - N. J. A. Sloane, Jan 02 2020

Examples

			For n = 1, the radius of the outermost circle divided by the radius of a circle drawn tangent to all three of the initial inner circle, the opposite inner circle (the 0th circle in the chain), and the 1st circle in the chain is 15.
For n = 2, the radius of the outermost circle divided by the radius of a circle drawn tangent to all three of the initial inner circle, the 1st circle in the chain, and the 2nd circle in the chain is 23.
		

Crossrefs

Programs

Formula

a(n) = 4*n^2 - 4*n + 15.
From Colin Barker, May 14 2014: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -x*(15*x^2 - 22*x + 15)/(x-1)^3. (End)
From Descartes three circle theorem:
a(n) = 2 + c(n) + c(n-1) + 2*sqrt(2*(c(n) + c(n-1)) + c(n)*c(n-1)), with c(n) = A059100(n) = n^2 + 2, n >= 1, which produces 4*n^2 - 4*n + 15. - Wolfdieter Lang, Jul 01 2015
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: exp(x)*(4*x^2 + 15) - 15.
a(n) = A060747(n)^2 + 14. (End)

Extensions

More terms from Wesley Ivan Hurt, May 13 2014
More terms and links from Robert G. Wilson v, May 13 2014
Edited: Name reformulated (with consent of the author). - Wolfdieter Lang, Jul 01 2015
Edited by N. J. A. Sloane, Jan 02 2020, simplifying the definition and adding a reference to the fact that this sequence arose in a sangaku problem from 1788 in a temple in Tokyo Prefecture.