A242416 Numbers whose prime factorization viewed as a tuple of nonzero powers is not palindromic.
12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 200
Offset: 1
Keywords
Examples
12 = p_1^2 * p_2^1 is present, as (2,1) is not a palindrome.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
q:= n-> (l-> is(n<>mul(l[i, 1]^l[-i, 2], i=1..nops(l))))(sort(ifactors(n)[2])): select(q, [$1..200])[]; # Alois P. Heinz, Feb 04 2022
-
Mathematica
Select[Range[200], !PalindromeQ[FactorInteger[#][[All, 2]]]&] (* Jean-François Alcover, Feb 09 2025 *)
Comments