cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A242414 Numbers whose prime factorization viewed as a tuple of nonzero powers is palindromic.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 100
Offset: 1

Views

Author

Antti Karttunen, May 30 2014

Keywords

Comments

The fixed points of permutation A069799.
Differs from its subsequence, A072774, Powers of squarefree numbers, for the first time at n=68, as here a(68) = 90 is included, as 90 = p_1^1 * p_2^2 * p_3^1 has a palindromic tuple of exponents, even although not all of them are identical.
Differs from its another subsequence, A236510, in that, although numbers like 42 = 2^1 * 3^1 * 5^0 * 7^1, with a non-palindromic exponent-tuple (1,1,0,1) are excluded from A236510, it is included in this sequence, because here only the nonzero exponents are considered, and (1,1,1) is a palindrome.
Differs from A085924 in that as that sequence is subtly base-dependent, it excludes 1024 (= 2^10), as then the only exponent present, 10, and thus also its concatenation, "10", is not a palindrome when viewed in decimal base. On the contrary, here a(691) = 1024.

Examples

			As 1 has an empty factorization, (), which also is a palindrome, 1 is present.
As 42 = 2 * 3 * 7 = p_1^1 * p_2^1 * p_4^1, and (1,1,1) is palindrome, 42 is present.
As 90 = 2 * 9 * 5 = p_1^1 * p_2^2 * p_3^1, and (1,2,1) is palindrome, 90 is present.
Any prime power (A000961) is present, as such numbers have a factorization p^e (e >= 1), and any singleton sequence (e) by itself forms a palindrome.
		

Crossrefs

Fixed points of A069799.
Complement: A242416.
A000961, A072774 and A236510 are subsequences.

Programs

  • Mathematica
    Select[Range[100], PalindromeQ[FactorInteger[#][[All, 2]]]&] (* Jean-François Alcover, Feb 09 2025 *)

A332785 Nonsquarefree numbers that are not squareful.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 204, 207, 208, 212, 220, 224
Offset: 1

Views

Author

Bernard Schott, Feb 24 2020

Keywords

Comments

Sometimes nonsquarefree numbers are misnamed squareful numbers (see 1st comment of A013929). Indeed, every squareful number > 1 is nonsquarefree, but the converse is false. This sequence = A013929 \ A001694 and consists of these counterexamples.
This sequence is not a duplicate: the first 16 terms (<= 68) are the same first 16 terms of A059404, A323055, A242416 and A303946, then 72 is the 17th term of these 4 sequences. Also, the first 37 terms (<= 140) are the same first 37 terms of A317616 then 144 is the 38th term of this last sequence.
From Amiram Eldar, Sep 17 2023: (Start)
Called "hybrid numbers" by Jakimczuk (2019).
These numbers have a unique representation as a product of two numbers > 1, one is squarefree (A005117) and the other is powerful (A001694).
Equivalently, numbers k such that A055231(k) > 1 and A057521(k) > 1.
Equivalently, numbers that have in their prime factorization at least one exponent that is equal to 1 and at least one exponent that is larger than 1.
The asymptotic density of this sequence is 1 - 1/zeta(2) (A229099). (End)

Examples

			18 = 2 * 3^2 is nonsquarefree as it is divisible by the square 3^2, but it is not squareful because 2 divides 18 but 2^2 does not divide 18, hence 18 is a term.
72 = 2^3 * 3^2 is nonsquarefree as it is divisible by the square 3^2, but it is also squareful because primes 2 and 3 divide 72, and 2^2 and 3^2 divide also 72, so 72 is not a term.
		

Crossrefs

Cf. A005117 (squarefree), A013929 (nonsquarefree), A001694 (squareful), A052485 (not squareful).
Cf. A059404, A126706, A229099, A242416, A286708, A303946, A317616, A323055 (first terms are the same).

Programs

  • Maple
    filter:= proc(n) local F;
     F:= ifactors(n)[2][..,2];
     max(F) > 1 and min(F) = 1
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Sep 15 2024
  • Mathematica
    Select[Range[225], Max[(e = FactorInteger[#][[;;,2]])] > 1 && Min[e] == 1 &] (* Amiram Eldar, Feb 24 2020 *)
  • PARI
    isok(m) = !issquarefree(m) && !ispowerful(m); \\ Michel Marcus, Feb 24 2020
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A332785(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l, j = n-1+squarefreepi(integer_nthroot(x,3)[0])+squarefreepi(x), 0, isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c += j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c-l
        return bisection(f,n,n) # Chai Wah Wu, Sep 14 2024

Formula

This sequence is A126706 \ A286708.
Sum_{n>=1} 1/a(n)^s = 1 + zeta(s) - zeta(s)/zeta(2*s) - zeta(2*s)*zeta(3*s)/zeta(6*s), s > 1. - Amiram Eldar, Sep 17 2023

A360248 Numbers for which the prime indices do not have the same median as the distinct prime indices.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 184, 188, 189, 192, 200
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2023

Keywords

Comments

First differs from A242416 in lacking 180, with prime indices {1,1,2,2,3}.
First differs from A360246 in lacking 126 and having 1950.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
  12: {1,1,2}
  18: {1,2,2}
  20: {1,1,3}
  24: {1,1,1,2}
  28: {1,1,4}
  40: {1,1,1,3}
  44: {1,1,5}
  45: {2,2,3}
  48: {1,1,1,1,2}
  50: {1,3,3}
  52: {1,1,6}
  54: {1,2,2,2}
  56: {1,1,1,4}
  60: {1,1,2,3}
  63: {2,2,4}
  68: {1,1,7}
  72: {1,1,1,2,2}
The prime indices of 126 are {1,2,2,4} with median 2 and distinct prime indices {1,2,4} with median 2, so 126 is not in the sequence.
The prime indices of 1950 are {1,2,3,3,6} with median 3 and distinct prime indices {1,2,3,6} with median 5/2, so 1950 is in the sequence.
		

Crossrefs

These partitions are counted by A360244.
The complement is A360249, counted by A360245.
For multiplicities instead of parts: complement of A360453.
For multiplicities instead of distinct parts: complement of A360454.
For mean instead of median we have A360246, counted by A360242.
The complement for mean instead of median is A360247, counted by A360243.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A326619/A326620 gives mean of distinct prime indices.
A325347 = partitions with integer median, strict A359907, ranked by A359908.
A359893 and A359901 count partitions by median.
A360005 gives median of prime indices (times two).

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Median[prix[#]]!=Median[Union[prix[#]]]&]

A069799 The number obtained by reversing the sequence of nonzero exponents in the prime factorization of n with respect to distinct primes present, as ordered by their indices.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 13, 14, 15, 16, 17, 12, 19, 50, 21, 22, 23, 54, 25, 26, 27, 98, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 250, 41, 42, 43, 242, 75, 46, 47, 162, 49, 20, 51, 338, 53, 24, 55, 686, 57, 58, 59, 150, 61, 62, 147, 64, 65
Offset: 1

Views

Author

Amarnath Murthy, Apr 13 2002

Keywords

Comments

Equivalent description nearer to the old name: a(n) is a number obtained by reversing the indices of the primes present in the prime factorization of n, from the smallest to the largest, while keeping the nonzero exponents of those same primes at their old positions.
This self-inverse permutation of natural numbers fixes the numbers in whose prime factorization the sequence of nonzero exponents form a palindrome: A242414.
Integers which are changed are A242416.
Considered as a function on partitions encoded by the indices of primes in the prime factorization of n (as in table A112798), this implements an operation which reverses the order of vertical line segments of the "steps" in Young (or Ferrers) diagram of a partition, but keeps the order of horizontal line segments intact. Please see the last example in the example section.

Examples

			a(24) = 54 as 24 = p_1^3 * p_2^1 = 2^3 * 3^1 and 54 = p_1^1 * p_2^3 = 2 * 3^3.
For n = 2200, we see that it encodes the partition (1,1,1,3,3,5) in A112798 as 2200 = p_1 * p_1 * p_1 * p_3 * p_3 * p_5 = 2^3 * 5^2 * 11. This in turn corresponds to the following Young diagram in French notation:
   _
  | |
  | |
  | |_ _
  |     |
  |     |_ _
  |_ _ _ _ _|
Reversing the order of vertical line segment lengths (3,2,1)  to (1,2,3), but keeping the order of horizontal line segment lengths as (1,2,2), we get a new Young diagram
   _
  | |_ _
  |     |
  |     |_ _
  |         |
  |         |
  |_ _ _ _ _|
which represents the partition (1,3,3,5,5,5), encoded in A112798 by p_1 * p_3^2 * p_5^3 = 2 * 5^2 * 11^3 = 66550, thus a(2200) = 66550.
		

Crossrefs

A242414 gives the fixed points and A242416 is their complement.
{A000027, A069799, A242415, A242419} form a 4-group.
The set of permutations {A069799, A105119, A225891} generates an infinite dihedral group.

Programs

  • Haskell
    a069799 n = product $
                zipWith (^) (a027748_row n) (reverse $ a124010_row n)
    -- Reinhard Zumkeller, Apr 27 2013
    (MIT/GNU Scheme, with Aubrey Jaffer's SLIB Scheme library)
    (require 'factor)
    (define (A069799 n) (let ((pf (ifactor n))) (apply * (map expt (uniq pf) (reverse (multiplicities pf))))))
    (define (ifactor n) (cond ((< n 2) (list)) (else (sort (factor n) <))))
    (define (uniq lista) (let loop ((lista lista) (z (list))) (cond ((null? lista) (reverse! z)) ((and (pair? z) (equal? (car z) (car lista))) (loop (cdr lista) z)) (else (loop (cdr lista) (cons (car lista) z))))))
    (define (multiplicities lista) (let loop ((mults (list)) (lista lista) (prev #f)) (cond ((not (pair? lista)) (reverse! mults)) ((equal? (car lista) prev) (set-car! mults (+ 1 (car mults))) (loop mults (cdr lista) prev)) (else (loop (cons 1 mults) (cdr lista) (car lista))))))
    ;; Antti Karttunen, May 24 2014
    
  • Maple
    A069799 := proc(n) local e,j; e := ifactors(n)[2]:
    mul (e[j][1]^e[nops(e)-j+1][2], j=1..nops(e)) end:
    seq (A069799(i), i=1..40);
    # Peter Luschny, Jan 17 2011
  • Mathematica
    f[n_] := Block[{a = Transpose[ FactorInteger[n]], m = n}, If[ Length[a] == 2, Apply[ Times, a[[1]]^Reverse[a[[2]] ]], m]]; Table[ f[n], {n, 1, 65}]
  • PARI
    a(n) = {my(f = factor(n)); my(g = f); my(nbf = #f~); for (i=1, nbf, g[i, 1] = f[nbf-i+1, 1];); factorback(g);} \\ Michel Marcus, Jul 02 2015

Formula

If n = p_a^e_a * p_b^e_b * ... * p_j^e_j * p_k^e_k, where p_a < ... < p_k are distinct primes of the prime factorization of n (sorted into ascending order), and e_a, ..., e_k are their nonzero exponents, then a(n) = p_a^e_k * p_b^e_j * ... * p_j^e_b * p_k^e_a.
a(n) = product(A027748(o(n)+1-k)^A124010(k): k=1..o(n)) = product(A027748(k)^A124010(o(n)+1-k): k=1..o(n)), where o(n) = A001221(n). - Reinhard Zumkeller, Apr 27 2013
From Antti Karttunen, Jun 01 2014: (Start)
Can be obtained also by composing/conjugating related permutations:
a(n) = A242415(A242419(n)) = A242419(A242415(n)).
(End)

Extensions

Edited, corrected and extended by Robert G. Wilson v and Vladeta Jovovic, Apr 15 2002
Definition corrected by Reinhard Zumkeller, Apr 27 2013
Definition again reworded, Comments section edited and Young diagram examples added by Antti Karttunen, May 30 2014

A360246 Numbers for which the prime indices do not have the same mean as the distinct prime indices.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2023

Keywords

Comments

First differs from A242416 in having 126.
Contains no squarefree numbers or perfect powers.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
   12: {1,1,2}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   40: {1,1,1,3}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
   50: {1,3,3}
   52: {1,1,6}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   63: {2,2,4}
   68: {1,1,7}
   72: {1,1,1,2,2}
The prime indices of 126 are {1,2,2,4} with mean 9/4 and distinct prime indices {1,2,4} with mean 7/3, so 126 is in the sequence.
		

Crossrefs

Signature instead of parts: complement A324570, counted by A114638.
Signature instead of distinct parts: complement A359903, counted by A360068.
These partitions are counted by A360242.
The complement is A360247, counted by A360243.
For median we have A360248, counted by A360244 (complement A360245).
Union of A360252 and A360253, counted by A360250 and A360251.
A058398 counts partitions by mean, also A327482.
A088529/A088530 gives mean of prime signature (A124010).
A112798 lists prime indices, length A001222, sum A056239.
A316413 = numbers whose prime indices have integer mean, distinct A326621.
A326567/A326568 gives mean of prime indices.
A326619/A326620 gives mean of distinct prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Mean[prix[#]]!=Mean[Union[prix[#]]]&]
Showing 1-5 of 5 results.