cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A267824 Composite numbers n such that binomial(2n-1, n-1) == 1 (mod n^2).

Original entry on oeis.org

283686649, 4514260853041
Offset: 1

Views

Author

Jonathan Sondow, Jan 25 2016

Keywords

Comments

Babbage proved the congruence holds if n > 2 is prime.
See A088164 and A263882 for references, links, and additional comments.
Conjecture: n is a term if and only if n = A088164(i)^2 for some i >= 1 (cf. McIntosh, 1995, p. 385). - Felix Fröhlich, Jan 27 2016
The "if" part of the conjecture is true: see the McIntosh reference. - Jonathan Sondow, Jan 28 2016
The above conjecture implies that this sequence and A228562 are disjoint. - Felix Fröhlich, Jan 27 2016
Composites c such that A281302(c) > 1. - Felix Fröhlich, Feb 21 2018

Examples

			a(1) = 16843^2 and a(2) = 2124679^2 are squares of Wolstenholme primes A088164.
		

Crossrefs

A282410 a(n) = binomial(2*p-1, p-1) modulo p^5, where p = prime(n).

Original entry on oeis.org

3, 10, 126, 1716, 30614, 2198, 1100513, 713337, 4635628, 4511966, 15729649, 49285370, 10820598, 115444165, 110571496, 84562137, 145202954, 386548644, 208729523, 1232287574, 790871562, 2277840181, 3525066856, 4912928962, 7258488370, 8723558568, 9006255935
Offset: 1

Views

Author

Felix Fröhlich, Feb 14 2017

Keywords

Comments

Conjecture: a(n) != 1 for all n (cf. McIntosh, 1995, p. 387).
See arXiv:1502.05750, Theorem 2 for several conditions equivalent to p having a(n) = 1.
Clearly, a prime p such that a(n) = 1 must be a Wolstenholme prime, i.e., a term of A088164.
a(n) is prime for n: 1, 7, 19, 59, 76, 92, 109, 112, 165, 196, 221, 249, 263, 326, etc. Robert G. Wilson v, Feb 14 2017

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{p = Prime@n}, Mod[ Binomial[ 2p -1, p -1], p^5]]; Array[f, 27] (* Robert G. Wilson v, Feb 14 2017 *)
    Table[Mod[Binomial[2p-1,p-1],p^5],{p,Prime[Range[30]]}] (* Harvey P. Dale, Jul 07 2022 *)
  • PARI
    a(n) = my(p=prime(n)); lift(Mod(binomial(2*p-1, p-1), p^5))
    
  • Python
    from sympy import Mod, binomial, prime
    def A282410(n): return int(Mod(binomial(2*(p:=prime(n))-1,p-1,evaluate=False),p**5)) # Chai Wah Wu, Apr 24 2025
Showing 1-2 of 2 results.