A242541 Undulating primes: prime numbers whose digits follow the pattern A, B, A, B, A, B, A, B, ...
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 18181, 32323, 35353, 72727, 74747, 78787, 94949, 95959, 1212121, 1616161, 323232323
Offset: 1
Examples
121 = 11*11 is not prime and thus is not a term of this sequence.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..135
Programs
-
Maple
select(isprime,[$0..99,seq(seq(seq(a*(10^(d+1)-10^(d+1 mod 2))/99 + b*(10^d - 10^(d mod 2))/99, b=0..9),a=1..9,2),d=3..9,2)]); # Robert Israel, Jul 08 2016
-
Mathematica
Select[Union[Flatten[Table[FromDigits[PadRight[{},n,#]],{n,9}]&/@ Tuples[ Range[0,9],2]]],PrimeQ] (* Harvey P. Dale, May 26 2015 *)
-
Python
from itertools import count, islice from sympy import isprime, primerange def agen(): # generator of terms yield from primerange(2, 100) yield from (t for t in (int((A+B)*d2+A) for d2 in count(1) for A in "1379" for B in "0123456789") if isprime(t)) print(list(islice(agen(), 51))) # Michael S. Branicky, Jun 09 2022
Comments