A242551 Number of n-length words on infinite alphabet {1,2,...} such that the maximal runs of consecutive equal integers have lengths that are at least as great as the integer.
1, 1, 2, 5, 11, 24, 53, 118, 261, 577, 1276, 2823, 6246, 13819, 30572, 67635, 149630, 331029, 732344, 1620187, 3584388, 7929844, 17543415, 38811782, 85864379, 189960150, 420254129, 929739922, 2056889538, 4550514023, 10067228909, 22272010878, 49272989918, 109008007822, 241161451563, 533528195645
Offset: 0
Examples
a(3)=5 because we have: 111, 122, 221, 222, 333. a(4)=11 because we have: 1111, 1122, 1221, 1222, 2211, 2221, 2222, 3331, 1333, 3333, 4444.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n=0, 1, `if`(t=0, 0, b(n-1, t)) +add( `if`(t=j, 0, b(n-j, j)), j=1..n)) end: a:= n-> b(n, 0): seq(a(n), n=0..40); # Alois P. Heinz, Oct 07 2015
-
Mathematica
n=nn=35;CoefficientList[Series[1/(1-Sum[v[i]/(1+v[i])/.v[i]->z^i/(1-z),{i,1,n}]),{z,0,nn}],z]
-
PARI
C_x(N)={my(x='x+O('x^N), h = 1/(1-sum(i=1,N, x^i/(1 - x + x^i)))); Vec(h)} C_x(40) \\ John Tyler Rascoe, Jul 23 2024
Formula
G.f.: 1/(1 - Sum_{i>0} x^i/(1 - x + x^i)). - John Tyler Rascoe, Jul 23 2024
Comments