A242563 a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4), a(0)=a(1)=0, a(2)=2, a(3)=3.
0, 0, 2, 3, 6, 10, 21, 42, 86, 171, 342, 682, 1365, 2730, 5462, 10923, 21846, 43690, 87381, 174762, 349526, 699051, 1398102, 2796202, 5592405, 11184810, 22369622, 44739243, 89478486, 178956970, 357913941, 715827882, 1431655766, 2863311531, 5726623062, 11453246122
Offset: 0
Examples
G.f. = 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 21*x^6 + 42*x^7 + 86*x^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1,2).
Programs
-
Mathematica
a[n_] := (m = Mod[n, 6]; 1/3*(2^n + (-1)^n + 1/120*(m-6)*(m+1)*(m^3-29*m+40))); Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 19 2014, a non-recursive formula, after Mathematica's RSolve *) LinearRecurrence[{2, 0, -1, 2}, {0, 0, 2, 3},50] (* G. C. Greubel, Feb 21 2017 *)
-
PARI
concat([0,0], Vec(x^2*(x-2)/((x+1)*(2*x-1)*(x^2-x+1)) + O(x^100))) \\ Colin Barker, May 18 2014
Formula
a(n+3) = 3*2^n - a(n), a(0)=a(1)=0, a(2)=2.
a(n+1) = 2*a(n) + period 6: repeat 0, 2, -1, 0, -2, 1. a(0)=0.
a(n) = 2^n - A081374(n+1).
a(n+3) = a(n+1) + A130755(n).
G.f.: x^2*(x-2) / ((x+1)*(2*x-1)*(x^2-x+1)). - Colin Barker, May 18 2014
a(n+6) = a(n) + 21*2^n, a(0)=a(1)=0, a(2)=2, a(3)=3, a(4)=6, a(5)=10.
a(n) = 1/3*((-1)^n - 2*cos((n*Pi)/3) + 2^n). - Alexander R. Povolotsky, Jun 02 2014
Extensions
More terms from Colin Barker, May 18 2014
Comments