A242564 Least prime p such that p*10^n+1, p*10^n+3, p*10^n+7 and p*10^n+9 are all prime.
19, 1657, 13, 9001, 283, 115201, 61507, 249439, 375127, 472831, 786823, 172489, 1237, 2359033, 163063, 961981, 1442017, 457, 1208833, 4845583, 1146877, 11550193, 436831, 1911031, 581047, 4504351, 215737, 3685051, 27805381, 1343791, 82491967, 15696349, 20446423
Offset: 1
Examples
2*10^3+1 (2001), 2*10^3+3 (2003), 2*10^3+7 (2007) and 2*10^3+9 (2009) are not all prime. 3*10^3+1 (3001), 3*10^3+3 (3003), 3*10^3+7 (3007) and 3*10^3+9 (3009) are not all prime. 5*10^3+1 (5001), 5*10^3+3 (5003), 5*10^3+7 (5007) and 5*10^3+9 (5009) are not all prime. 7*10^3+1 (7001), 7*10^3+3 (7003), 7*10^3+7 (7007) and 7*10^3+9 (7009) are not all prime. 11*10^3+1 (11001), 11*10^3+3 (11003), 11*10^3+7 (11007) and 11*10^3+9 (11009) are not all prime. 13*10^3+1 (13001), 13*10^3+3 (13003), 13*10^3+7 (13007) and 13*10^3+9 (13009) are all prime. Thus, a(3) = 13.
Programs
-
Mathematica
lpp[n_]:=Module[{c=10^n,p=2},While[Not[AllTrue[p*c+{1,3,7,9},PrimeQ]], p= NextPrime[ p]];p]; Array[lpp,40] (* Harvey P. Dale, Mar 24 2018 *)
-
Python
import sympy from sympy import isprime from sympy import prime def Pr(n): for p in range(1,10**7): if isprime(prime(p)*(10**n)+1) and isprime(prime(p)*(10**n)+3) and isprime(prime(p)*(10**n)+7) and isprime(prime(p)*(10**n)+9): return prime(p) n = 1 while n < 50: print(Pr(n)) n += 1