A242593 Triangular array read by rows: T(n,k) is the number of length n words on {B,G} that contain exactly k occurrences of the contiguous substrings BGB or GBG. The substrings are allowed to overlap; n>=0, 0<=k<=max(n-2,0).
1, 2, 4, 6, 2, 10, 4, 2, 16, 10, 4, 2, 26, 20, 12, 4, 2, 42, 40, 26, 14, 4, 2, 68, 76, 58, 32, 16, 4, 2, 110, 142, 120, 78, 38, 18, 4, 2, 178, 260, 244, 172, 100, 44, 20, 4, 2, 288, 470, 482, 374, 232, 124, 50, 22, 4, 2, 466, 840, 936, 784, 534, 300, 150, 56, 24, 4, 2, 754, 1488, 1788, 1612, 1176, 726, 376, 178, 62, 26, 4, 2
Offset: 0
Examples
Triangle T(n,k) begins: 1; 2; 4; 6, 2; 10, 4, 2; 16, 10, 4, 2; 26, 20, 12, 4, 2; 42, 40, 26, 14, 4, 2; 68, 76, 58, 32, 16, 4, 2; 110, 142, 120, 78, 38, 18, 4, 2, 178, 260, 244, 172, 100, 44, 20, 4, 2; T(4,1) = 4 because we have: BBGB, BGBB, GBGG, GGBG. T(4,2) = 2 because we have: BGBG, GBGB.
Links
- Alois P. Heinz, Rows n = 0..150, flattened
Crossrefs
Cf. A128588.
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n=0, 1, expand( b(n-1, [4, 3, 4, 4, 3][t])*`if`(t=5, x, 1)+ b(n-1, [2, 2, 5, 5, 2][t])*`if`(t=3, x, 1))) end: T:= n-> (p-> seq(coeff(p,x,i), i=0..degree(p)))(b(n, 1)): seq(T(n), n=0..16); # Alois P. Heinz, May 18 2014
-
Mathematica
nn=10;sol=Solve[{A==va(z^3+z^2A+z B),B==va(z^3+z^2 B + z A)},{A,B}]; Fz[z_,y_]:=Simplify[1/(1-2z-A-B)/.sol/.va->y-1]; Map[Select[#,#>0&]&, Level[CoefficientList[Series[Fz[z,y],{z,0,nn}],{z,y}],{2}]]//Grid
Formula
G.f.: 1/(1 - 2*x - 2*(y-1)*x^3/(1 - (y-1)*x - (y-1)*x^2) ).
Comments