A242635 Number of n-length words w over an n-ary alphabet {a_1,...,a_n} such that w contains never more than j consecutive letters a_j for 1<=j<=n.
1, 1, 3, 21, 208, 2631, 40295, 724892, 14984945, 350068993, 9121438862, 262285777567, 8250643190038, 281849526767134, 10390959086757005, 411219228179234026, 17387847546353549435, 782342249208357483984, 37321230268969840324231, 1881590248383756833279387
Offset: 0
Keywords
Links
- Geoffrey Critzer and Alois P. Heinz, Table of n, a(n) for n = 0..386
Crossrefs
Main diagonal of A242464.
Programs
-
Maple
a:= proc(n) option remember; local v; v:= i-> (x-x^(i+1))/(1-x); coeff(series(1/(1-add(v(i)/(1+v(i)), i=1..n)), x, n+1), x, n) end: seq(a(n), n=0..25);
-
Mathematica
b[n_, k_, c_, t_] := b[n, k, c, t] = If[n == 0, 1, Sum[If[c == t && j == c, 0, b[n - 1, k, j, 1 + If[j == c, t, 0]]], {j, 1, k}]]; a[n_] := b[n, n, 0, 0]; a /@ Range[0, 25] (* Jean-François Alcover, Dec 28 2020, from Maple code of A242464 *)
Formula
a(n) = [x^n] 1/(1-Sum_{i=1..n} v(i)/(1+v(i))) with v(i) = (x-x^(i+1))/(1-x).
a(n) ~ n^n. - Vaclav Kotesovec, Aug 27 2014