cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A242740 Numbers n dividing every cyclic permutation of n^4.

Original entry on oeis.org

1, 3, 9, 21, 27, 73, 99, 111, 271, 693, 707, 777, 819, 909, 999, 2151, 2629, 3441, 3813, 4551, 6987, 7227, 7373, 9999, 18981, 19019, 20007, 20979, 23199, 24453, 25641, 27027, 27417, 30303, 81819, 82113, 83883, 99999, 125523, 172013, 194841, 201917, 238139
Offset: 1

Views

Author

Michel Lagneau, May 21 2014

Keywords

Comments

Property of the sequence :
Consider the sequence A178028 (Numbers n dividing every cyclic permutation of n^2), so
a(1) = A178028 (1) = 1;
a(5) = A178028 (5) = 27;
a(7) = A178028 (7) = 99;
a(9) = A178028 (9) = 271;
a(10) = A178028 (15) = 693;
a(13) = A178028 (17) = 819;
a(15) = A178028 (18) = 999;
a(16) = A178028 (19) = 2151;
a(22) = A178028 (22) = 7227;
...........................

Examples

			21 is a member as all the six cyclic permutations of 21^4 = 194481 are :
{194481, 944811, 448119, 481194, 811944, 119448} and :
194481 = 21*9261;
944811 = 21*44991;
448119 = 21*21339;
811944 = 21*38664;
119448 = 21*5688.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[300000], And@@Divisible[FromDigits/@Table[ RotateRight[ IntegerDigits[ #^4], n], {n, IntegerLength[#^4]}], #]&]

A262814 Numbers k dividing every cyclic permutation of k^k.

Original entry on oeis.org

1, 2, 3, 7, 9, 11, 27, 63, 99, 111, 129, 159, 231, 271, 273, 303, 333, 351, 357, 403, 457, 711, 991, 999, 1111, 1147, 1241, 2121, 2479, 4227, 4653, 5151, 5547, 5837, 6191, 6237, 6643, 6993, 7133, 8229, 8547, 8683, 8811, 8987, 9009, 9633, 9999, 11009, 13449, 13531
Offset: 1

Views

Author

Michel Lagneau, Oct 03 2015

Keywords

Comments

Conjecture: 10^n-1 is a term of the sequence for all n > 0. - Chai Wah Wu, Nov 03 2015

Examples

			7 is a member as the six cyclic permutations of 7^7 = 823543 are {823543, 382354, 438235, 543823, 354382, 235438} and these 6 integers are divisible by 7.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], And@@Divisible[FromDigits/@Table[ RotateRight[ IntegerDigits[ #^#], n], {n, IntegerLength[#^#]}], #]&]
  • PARI
    isok(n) = {my(nn = n^n); for (j=1, #Str(nn)-1, cp = eval(Str(nn%10^j, nn\10^j)); if (cp % n, return (0));); return (1);} \\ Michel Marcus, Oct 11 2015
    
  • Python
    A262814_list = []
    for k in range(1,10**3):
        n = k**k
        if not n % k:
            s = str(n)
            for i in range(len(s)-1):
                s = s[1:]+s[0]
                if int(s) % k:
                    break
            else:
                A262814_list.append(k) # Chai Wah Wu, Oct 26 2015

Extensions

a(24)-a(27) from Michel Marcus, Oct 11 2015
a(28)-a(50) from Chai Wah Wu, Oct 26 2015
Showing 1-2 of 2 results.