A242741 Primes p such that p^2 divides 15^(p-1) - 1.
29131, 119327070011
Offset: 1
Links
- Amir Akbary and Sahar Siavashi, The Largest Known Wieferich Numbers, INTEGERS, 18(2018), A3. See Table 1 p. 5.
- R. Fischer, Thema: Fermatquotient B^(P-1) == 1 (mod P^2)
Programs
-
Mathematica
Select[Prime[Range[1000000]], PowerMod[15, # - 1, #^2] == 1 &] (* Robert Price, May 17 2019 *)
-
PARI
forprime(n=2, 10^9, if(Mod(15, n^2)^(n-1)==1, print1(n, ", ")));
Comments