A242804 Integers k such that each of k, k+1, k+2, k+4, k+5, k+6 is the product of two distinct primes.
213, 143097, 194757, 206133, 273417, 684897, 807657, 1373937, 1391757, 1516533, 1591593, 1610997, 1774797, 1882977, 1891761, 2046453, 2051493, 2163417, 2163957, 2338053, 2359977, 2522517, 2913837, 3108201, 4221753
Offset: 1
Keywords
Examples
213=3*71, 214=2*107, 215=5*43, 217=7*31, 218=2*109, 219=3*73.
Links
- Zak Seidov and Robert G. Wilson v, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= t -> numtheory:-issqrfree(t) and (numtheory:-bigomega(t) = 2): select(t -> andmap(f, [t,t+1,t+2,t+4,t+5,t+6]), [seq(36*k+33,k=0..10^6)]); # Robert Israel, Apr 15 2015
-
Mathematica
fQ[n_] := PrimeQ[n/3] && PrimeQ[(n + 1)/2] && PrimeQ[(n + 5)/2] && PrimeQ[(n + 6)/3] && PrimeNu[{n + 2, n + 4}] == {2, 2} == PrimeOmega[{n + 2, n + 4}]; k = 33; lst = {}; While[k < 10^8, If[fQ@ k, AppendTo[lst, k]]; k += 36]; lst (* Robert G. Wilson v, Apr 14 2015 and revised Apr 15 2015 after Zak Seidov and Robert Israel *)
-
PARI
default(primelimit, 1000M); i=0; j=0; k=0; l=0; m=0; loc=0; lb=2; ub=9*10^9; o=2; for(n=lb, ub, if(issquarefree(n)&&(o==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1
-
PARI
forstep(x=213,4221753,12, if( isprime(x/3) && isprime((x+1)/2) && 2==omega(x+2) && 2==bigomega(x+2) && 2==omega(x+4) && 2==bigomega(x+4) && isprime((x+5)/2) && isprime((x+6)/3), print1(x", "))) \\ Zak Seidov, Apr 14 2015
Comments