Original entry on oeis.org
17, 11924, 16229, 17177, 22784, 57074, 67304, 114494, 115979, 126377, 132632, 134249, 147899, 156914, 157646, 170537, 170957, 180284, 180329, 194837, 196664, 210209, 242819, 259016, 351812, 358109, 361244, 405509
Offset: 1
A242805
Integers n such that each of n, n + 1, n + 2, n + 4, n + 5, n + 6 is the squarefree product of three primes.
Original entry on oeis.org
73293, 120237, 122613, 130429, 143493, 147953, 171893, 180965, 199833, 213153, 219201, 268017, 287493, 298433, 299553, 300093, 313701, 329793, 332889, 341781, 363597, 369393, 376201, 392509, 404453, 432393, 460801, 475809, 493597, 503457, 506517, 508677
Offset: 1
73293 = 3*11*2221, 73294 = 2*13*2819, 73295 = 5*107*137,
73297 = 7*37*283, 73298 = 2*67*547, 73299 = 3*53*461.
CAVEAT:
(1) For the dodekuplet, which starts together with the first nonet,
969833 = 17*89*641, 969834 = 2*3*161639, 969835 = 5*31*6257,
969837 = 3*11*29389, 969838 = 2*173*2803, 969839 = 13*61*1223,
969841 = 23*149*283, 969842 = 2*59*8219, 969843 = 3*7*46183,
969845 = 5*47*4127, 969846 = 2*3*161641, 969847 = 29*53*631.
Not all PARI scripts list 969833 and 969841, but not 969837.
(2) For the second nonet,
1450257 = 3*229*2111, 1450258 = 2*179*4051, 1450259 = 83*101*173,
1450261 = 29*43*1163, 1450262 = 2*11*65921, 1450263 = 3*191*2531,
1450265 = 5*23*12611, 1450266 = 2*3*241711, 1450267 = 7*13*15937,
the PARI script lists 1450257 only, but not 1450261.
-
s = {}; Do[If[AllTrue[{k, k + 1, k + 2, k + 4, k + 5, k + 6}, SquareFreeQ] && {3, 3, 3, 3, 3, 3} == PrimeOmega[{k, k + 1, k + 2, k + 4, k + 5, k + 6}], AppendTo[s, k]], {k, 73293, 2000000, 4}]; s (* Zak Seidov, Nov 12 2018 *)
-
{ default(primelimit, 1000M); i=0; j=0; k=0; l=0; m=0; loc=0; lb=2; ub=9*10^9; o=3; for(n=lb, ub, if(issquarefree(n)&&(o==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1
-
is(n) = {my(f=factor(n)); matsize(f)==[3, 2] && vecmax(f[ , 2])==1};
isok(v) = vecextract(v, "^4")==[1, 1, 1, 1, 1, 1]; v = vector(7); for(k=8, 550000, v=concat(vecextract(v, "^1"), is(k+6)); if(isok(v), print1(k, ", "))) \\ Amiram Eldar, Nov 13 2018
-
upto(n) = {my(res = List(), streak = 1); for(i = 31, n+6, if(factor(i)[, 2] == [1, 1, 1]~, streak++; if(streak % 4 == 3 && streak >= 7, listput(res, i-6)), if(streak % 4 == 3, streak++, streak = 0))); res} \\ David A. Corneth, Nov 13 2018
A242793
The minimal integer x such that each of the six integers x, x+1, x+2, x+4, x+5, x+6 is squarefree with exactly n prime divisors.
Original entry on oeis.org
213, 73293, 9743613, 6639266409
Offset: 2
213=3*71, 214=2*107, 215=5*43, 217=7*31, 218=2*109, 219=3*73;
73293=3*11*2221, 73294=2*13*2819, 73295=5*107*137,
73297=7*37*283, 73298=2*67*547, 73299=3*53*461;
9743613=3*11*503*587, 9743614=2*59*71*1163, 9743615= 5*7*167*1667, 9743617=13*37*47*431, 9743618=2*17*19*15083, 9743619=3*83*109*359;
6639266409=3*29*109*421*1663, 6639266410=2*5*7*113*839351,
6639266411=17*23*89*101*1889, 6639266413=13*61*79*131*809,
6639266414=2*11*349*857*1009, 6639266415=3*5*73*149*40693.
-
{ default(primelimit,1000M); i=0; j=0; k=0; l=0; m=0; loc=0; lb=2; ub=9*10^9; o=1; while(o<5, o=o+1; for(n=lb,ub, if(issquarefree(n)&&(o==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1
A242829
Integers n such that each of n, n+1, n+2, n+4, n+5, n+6 is the squarefree product of five primes.
Original entry on oeis.org
6639266409, 8628052209, 12692281897, 14492398389, 15798643881, 18883291565, 20404935965, 20825703713, 21342970293, 21597222381, 22221458853, 22567169229, 22578915665, 23000623161, 23198162685, 23247729109, 24163642653, 24802386189, 24894100941, 26297281109
Offset: 1
a(1) = 6639266409 = 3 * 29 * 109 * 421 * 1663,
6639266410 = 2 * 5 * 7 * 113 * 839351,
6639266411 = 17 * 23 * 89 * 101 * 1889,
6639266413 = 13 * 61 * 79 * 131 * 809,
6639266414 = 2 * 11 * 349 * 857 * 1009,
6639266415 = 3 * 5 * 73 * 149 * 40693;
and
a(2) = 8628052209 = 3 * 7 * 19 * 863 * 25057,
8628052210 = 2 * 5 * 251 * 953 * 3607,
8628052211 = 17 * 43 * 179 * 233 * 283,
8628052213 = 11 * 47 * 127 * 331 * 397,
8628052214 = 2 * 53 * 107 * 131 * 5807,
8628052215 = 3 * 5 * 23 * 31 * 806737.
-
{ default(primelimit, 1000M); i=0; j=0; k=0; l=0; m=0; loc=0; lb=2; ub=9*10^9; o=5; for(n=lb, ub, if(issquarefree(n)&&(o==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1
A242806
Integers k such that each of k, k+1, k+2, k+4, k+5, k+6 is the squarefree product of four primes.
Original entry on oeis.org
9743613, 9780589, 22669381, 23209809, 23395137, 26143197, 28042877, 38110029, 43335609, 45127905, 45559613, 47163489, 47944865, 48030229, 48611913, 48762829, 50015301, 50600341, 50742501, 51256541, 52691613
Offset: 1
9743613=3*11*503*587, 9743614=2*59*71*1163, 9743615= 5*7*167*1667, 9743617=13*37*47*431, 9743618=2*17*19*15083, 9743619=3*83*109*359.
-
sfp4Q[n_]:=With[{c=n+{0,1,2,4,5,6}},Union[PrimeNu[c]]=={4}&&AllTrue[c,SquareFreeQ]]; Select[Range[52700000],sfp4Q] (* Harvey P. Dale, Jul 11 2025 *)
-
{ default(primelimit, 1000M); i=0; j=0; k=0; l=0; m=0; loc=0; lb=2; ub=9*10^9; o=4; for(n=lb, ub, if(issquarefree(n)&&(o==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1
Showing 1-5 of 5 results.
Comments