A242804
Integers k such that each of k, k+1, k+2, k+4, k+5, k+6 is the product of two distinct primes.
Original entry on oeis.org
213, 143097, 194757, 206133, 273417, 684897, 807657, 1373937, 1391757, 1516533, 1591593, 1610997, 1774797, 1882977, 1891761, 2046453, 2051493, 2163417, 2163957, 2338053, 2359977, 2522517, 2913837, 3108201, 4221753
Offset: 1
213=3*71, 214=2*107, 215=5*43, 217=7*31, 218=2*109, 219=3*73.
Cf.
A242793 (minima for two, three and more prime divisors) and
A068088 (arbitrary squarefree integers).
-
f:= t -> numtheory:-issqrfree(t) and (numtheory:-bigomega(t) = 2):
select(t -> andmap(f, [t,t+1,t+2,t+4,t+5,t+6]), [seq(36*k+33,k=0..10^6)]); # Robert Israel, Apr 15 2015
-
fQ[n_] := PrimeQ[n/3] && PrimeQ[(n + 1)/2] && PrimeQ[(n + 5)/2] && PrimeQ[(n + 6)/3] && PrimeNu[{n + 2, n + 4}] == {2, 2} == PrimeOmega[{n + 2, n + 4}]; k = 33; lst = {}; While[k < 10^8, If[fQ@ k, AppendTo[lst, k]]; k += 36]; lst (* Robert G. Wilson v, Apr 14 2015 and revised Apr 15 2015 after Zak Seidov and Robert Israel *)
-
default(primelimit, 1000M); i=0; j=0; k=0; l=0; m=0; loc=0; lb=2; ub=9*10^9; o=2; for(n=lb, ub, if(issquarefree(n)&&(o==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1
-
forstep(x=213,4221753,12, if( isprime(x/3) && isprime((x+1)/2) && 2==omega(x+2) && 2==bigomega(x+2) && 2==omega(x+4) && 2==bigomega(x+4) && isprime((x+5)/2) && isprime((x+6)/3), print1(x", "))) \\ Zak Seidov, Apr 14 2015
A242793
The minimal integer x such that each of the six integers x, x+1, x+2, x+4, x+5, x+6 is squarefree with exactly n prime divisors.
Original entry on oeis.org
213, 73293, 9743613, 6639266409
Offset: 2
213=3*71, 214=2*107, 215=5*43, 217=7*31, 218=2*109, 219=3*73;
73293=3*11*2221, 73294=2*13*2819, 73295=5*107*137,
73297=7*37*283, 73298=2*67*547, 73299=3*53*461;
9743613=3*11*503*587, 9743614=2*59*71*1163, 9743615= 5*7*167*1667, 9743617=13*37*47*431, 9743618=2*17*19*15083, 9743619=3*83*109*359;
6639266409=3*29*109*421*1663, 6639266410=2*5*7*113*839351,
6639266411=17*23*89*101*1889, 6639266413=13*61*79*131*809,
6639266414=2*11*349*857*1009, 6639266415=3*5*73*149*40693.
-
{ default(primelimit,1000M); i=0; j=0; k=0; l=0; m=0; loc=0; lb=2; ub=9*10^9; o=1; while(o<5, o=o+1; for(n=lb,ub, if(issquarefree(n)&&(o==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1
A242829
Integers n such that each of n, n+1, n+2, n+4, n+5, n+6 is the squarefree product of five primes.
Original entry on oeis.org
6639266409, 8628052209, 12692281897, 14492398389, 15798643881, 18883291565, 20404935965, 20825703713, 21342970293, 21597222381, 22221458853, 22567169229, 22578915665, 23000623161, 23198162685, 23247729109, 24163642653, 24802386189, 24894100941, 26297281109
Offset: 1
a(1) = 6639266409 = 3 * 29 * 109 * 421 * 1663,
6639266410 = 2 * 5 * 7 * 113 * 839351,
6639266411 = 17 * 23 * 89 * 101 * 1889,
6639266413 = 13 * 61 * 79 * 131 * 809,
6639266414 = 2 * 11 * 349 * 857 * 1009,
6639266415 = 3 * 5 * 73 * 149 * 40693;
and
a(2) = 8628052209 = 3 * 7 * 19 * 863 * 25057,
8628052210 = 2 * 5 * 251 * 953 * 3607,
8628052211 = 17 * 43 * 179 * 233 * 283,
8628052213 = 11 * 47 * 127 * 331 * 397,
8628052214 = 2 * 53 * 107 * 131 * 5807,
8628052215 = 3 * 5 * 23 * 31 * 806737.
-
{ default(primelimit, 1000M); i=0; j=0; k=0; l=0; m=0; loc=0; lb=2; ub=9*10^9; o=5; for(n=lb, ub, if(issquarefree(n)&&(o==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1
A242806
Integers k such that each of k, k+1, k+2, k+4, k+5, k+6 is the squarefree product of four primes.
Original entry on oeis.org
9743613, 9780589, 22669381, 23209809, 23395137, 26143197, 28042877, 38110029, 43335609, 45127905, 45559613, 47163489, 47944865, 48030229, 48611913, 48762829, 50015301, 50600341, 50742501, 51256541, 52691613
Offset: 1
9743613=3*11*503*587, 9743614=2*59*71*1163, 9743615= 5*7*167*1667, 9743617=13*37*47*431, 9743618=2*17*19*15083, 9743619=3*83*109*359.
-
sfp4Q[n_]:=With[{c=n+{0,1,2,4,5,6}},Union[PrimeNu[c]]=={4}&&AllTrue[c,SquareFreeQ]]; Select[Range[52700000],sfp4Q] (* Harvey P. Dale, Jul 11 2025 *)
-
{ default(primelimit, 1000M); i=0; j=0; k=0; l=0; m=0; loc=0; lb=2; ub=9*10^9; o=4; for(n=lb, ub, if(issquarefree(n)&&(o==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1
Showing 1-4 of 4 results.
Comments