A242804
Integers k such that each of k, k+1, k+2, k+4, k+5, k+6 is the product of two distinct primes.
Original entry on oeis.org
213, 143097, 194757, 206133, 273417, 684897, 807657, 1373937, 1391757, 1516533, 1591593, 1610997, 1774797, 1882977, 1891761, 2046453, 2051493, 2163417, 2163957, 2338053, 2359977, 2522517, 2913837, 3108201, 4221753
Offset: 1
213=3*71, 214=2*107, 215=5*43, 217=7*31, 218=2*109, 219=3*73.
Cf.
A242793 (minima for two, three and more prime divisors) and
A068088 (arbitrary squarefree integers).
-
f:= t -> numtheory:-issqrfree(t) and (numtheory:-bigomega(t) = 2):
select(t -> andmap(f, [t,t+1,t+2,t+4,t+5,t+6]), [seq(36*k+33,k=0..10^6)]); # Robert Israel, Apr 15 2015
-
fQ[n_] := PrimeQ[n/3] && PrimeQ[(n + 1)/2] && PrimeQ[(n + 5)/2] && PrimeQ[(n + 6)/3] && PrimeNu[{n + 2, n + 4}] == {2, 2} == PrimeOmega[{n + 2, n + 4}]; k = 33; lst = {}; While[k < 10^8, If[fQ@ k, AppendTo[lst, k]]; k += 36]; lst (* Robert G. Wilson v, Apr 14 2015 and revised Apr 15 2015 after Zak Seidov and Robert Israel *)
-
default(primelimit, 1000M); i=0; j=0; k=0; l=0; m=0; loc=0; lb=2; ub=9*10^9; o=2; for(n=lb, ub, if(issquarefree(n)&&(o==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1
-
forstep(x=213,4221753,12, if( isprime(x/3) && isprime((x+1)/2) && 2==omega(x+2) && 2==bigomega(x+2) && 2==omega(x+4) && 2==bigomega(x+4) && isprime((x+5)/2) && isprime((x+6)/3), print1(x", "))) \\ Zak Seidov, Apr 14 2015
A242805
Integers n such that each of n, n + 1, n + 2, n + 4, n + 5, n + 6 is the squarefree product of three primes.
Original entry on oeis.org
73293, 120237, 122613, 130429, 143493, 147953, 171893, 180965, 199833, 213153, 219201, 268017, 287493, 298433, 299553, 300093, 313701, 329793, 332889, 341781, 363597, 369393, 376201, 392509, 404453, 432393, 460801, 475809, 493597, 503457, 506517, 508677
Offset: 1
73293 = 3*11*2221, 73294 = 2*13*2819, 73295 = 5*107*137,
73297 = 7*37*283, 73298 = 2*67*547, 73299 = 3*53*461.
CAVEAT:
(1) For the dodekuplet, which starts together with the first nonet,
969833 = 17*89*641, 969834 = 2*3*161639, 969835 = 5*31*6257,
969837 = 3*11*29389, 969838 = 2*173*2803, 969839 = 13*61*1223,
969841 = 23*149*283, 969842 = 2*59*8219, 969843 = 3*7*46183,
969845 = 5*47*4127, 969846 = 2*3*161641, 969847 = 29*53*631.
Not all PARI scripts list 969833 and 969841, but not 969837.
(2) For the second nonet,
1450257 = 3*229*2111, 1450258 = 2*179*4051, 1450259 = 83*101*173,
1450261 = 29*43*1163, 1450262 = 2*11*65921, 1450263 = 3*191*2531,
1450265 = 5*23*12611, 1450266 = 2*3*241711, 1450267 = 7*13*15937,
the PARI script lists 1450257 only, but not 1450261.
-
s = {}; Do[If[AllTrue[{k, k + 1, k + 2, k + 4, k + 5, k + 6}, SquareFreeQ] && {3, 3, 3, 3, 3, 3} == PrimeOmega[{k, k + 1, k + 2, k + 4, k + 5, k + 6}], AppendTo[s, k]], {k, 73293, 2000000, 4}]; s (* Zak Seidov, Nov 12 2018 *)
-
{ default(primelimit, 1000M); i=0; j=0; k=0; l=0; m=0; loc=0; lb=2; ub=9*10^9; o=3; for(n=lb, ub, if(issquarefree(n)&&(o==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1
-
is(n) = {my(f=factor(n)); matsize(f)==[3, 2] && vecmax(f[ , 2])==1};
isok(v) = vecextract(v, "^4")==[1, 1, 1, 1, 1, 1]; v = vector(7); for(k=8, 550000, v=concat(vecextract(v, "^1"), is(k+6)); if(isok(v), print1(k, ", "))) \\ Amiram Eldar, Nov 13 2018
-
upto(n) = {my(res = List(), streak = 1); for(i = 31, n+6, if(factor(i)[, 2] == [1, 1, 1]~, streak++; if(streak % 4 == 3 && streak >= 7, listput(res, i-6)), if(streak % 4 == 3, streak++, streak = 0))); res} \\ David A. Corneth, Nov 13 2018
A242829
Integers n such that each of n, n+1, n+2, n+4, n+5, n+6 is the squarefree product of five primes.
Original entry on oeis.org
6639266409, 8628052209, 12692281897, 14492398389, 15798643881, 18883291565, 20404935965, 20825703713, 21342970293, 21597222381, 22221458853, 22567169229, 22578915665, 23000623161, 23198162685, 23247729109, 24163642653, 24802386189, 24894100941, 26297281109
Offset: 1
a(1) = 6639266409 = 3 * 29 * 109 * 421 * 1663,
6639266410 = 2 * 5 * 7 * 113 * 839351,
6639266411 = 17 * 23 * 89 * 101 * 1889,
6639266413 = 13 * 61 * 79 * 131 * 809,
6639266414 = 2 * 11 * 349 * 857 * 1009,
6639266415 = 3 * 5 * 73 * 149 * 40693;
and
a(2) = 8628052209 = 3 * 7 * 19 * 863 * 25057,
8628052210 = 2 * 5 * 251 * 953 * 3607,
8628052211 = 17 * 43 * 179 * 233 * 283,
8628052213 = 11 * 47 * 127 * 331 * 397,
8628052214 = 2 * 53 * 107 * 131 * 5807,
8628052215 = 3 * 5 * 23 * 31 * 806737.
-
{ default(primelimit, 1000M); i=0; j=0; k=0; l=0; m=0; loc=0; lb=2; ub=9*10^9; o=5; for(n=lb, ub, if(issquarefree(n)&&(o==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1
A242806
Integers k such that each of k, k+1, k+2, k+4, k+5, k+6 is the squarefree product of four primes.
Original entry on oeis.org
9743613, 9780589, 22669381, 23209809, 23395137, 26143197, 28042877, 38110029, 43335609, 45127905, 45559613, 47163489, 47944865, 48030229, 48611913, 48762829, 50015301, 50600341, 50742501, 51256541, 52691613
Offset: 1
9743613=3*11*503*587, 9743614=2*59*71*1163, 9743615= 5*7*167*1667, 9743617=13*37*47*431, 9743618=2*17*19*15083, 9743619=3*83*109*359.
-
sfp4Q[n_]:=With[{c=n+{0,1,2,4,5,6}},Union[PrimeNu[c]]=={4}&&AllTrue[c,SquareFreeQ]]; Select[Range[52700000],sfp4Q] (* Harvey P. Dale, Jul 11 2025 *)
-
{ default(primelimit, 1000M); i=0; j=0; k=0; l=0; m=0; loc=0; lb=2; ub=9*10^9; o=4; for(n=lb, ub, if(issquarefree(n)&&(o==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1
Showing 1-4 of 4 results.
Comments