A242822 Decimal expansion of B. Davis' constant Pi^2/(8*G), a Riesz-Kolmogorov constant, where G is Catalan's constant.
1, 3, 4, 6, 8, 8, 5, 2, 5, 1, 9, 9, 9, 4, 0, 6, 5, 9, 5, 1, 8, 2, 0, 0, 7, 5, 5, 5, 4, 4, 1, 1, 0, 7, 7, 9, 4, 7, 1, 5, 2, 5, 1, 6, 2, 5, 5, 6, 8, 9, 6, 8, 8, 2, 0, 8, 1, 9, 4, 2, 6, 2, 2, 8, 1, 2, 7, 0, 0, 8, 1, 0, 7, 3, 4, 2, 9, 5, 8, 3, 5, 2, 1, 0, 8, 2, 2, 9, 6, 3, 7, 7, 5, 4, 4, 7, 9, 8, 4, 7, 5
Offset: 1
Examples
1.3468852519994065951820075554411...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 7.7 Riesz-Kolmogorov Constants, p. 474.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:=RealField(); Pi(R)^2/(8*Catalan(R)); // G. C. Greubel, Aug 25 2018
-
Maple
s:= convert(evalf(Pi^2/(8*Catalan), 140), string): map(parse, subs("."=NULL, [seq(i, i=s)]))[]; # Alois P. Heinz, May 23 2014
-
Mathematica
RealDigits[Pi^2/(8*Catalan), 10, 100] // First
-
PARI
default(realprecision, 100); Pi^2/(8*Catalan) \\ G. C. Greubel, Aug 25 2018
Formula
Equals Product_{k>=1} (1 + 1/A002145(k)^2)/(1 - 1/A002145(k)^2) = A243381 / A243379. - Vaclav Kotesovec, Apr 30 2020
Equals 1/A377753. - Hugo Pfoertner, Nov 22 2024