cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242822 Decimal expansion of B. Davis' constant Pi^2/(8*G), a Riesz-Kolmogorov constant, where G is Catalan's constant.

Original entry on oeis.org

1, 3, 4, 6, 8, 8, 5, 2, 5, 1, 9, 9, 9, 4, 0, 6, 5, 9, 5, 1, 8, 2, 0, 0, 7, 5, 5, 5, 4, 4, 1, 1, 0, 7, 7, 9, 4, 7, 1, 5, 2, 5, 1, 6, 2, 5, 5, 6, 8, 9, 6, 8, 8, 2, 0, 8, 1, 9, 4, 2, 6, 2, 2, 8, 1, 2, 7, 0, 0, 8, 1, 0, 7, 3, 4, 2, 9, 5, 8, 3, 5, 2, 1, 0, 8, 2, 2, 9, 6, 3, 7, 7, 5, 4, 4, 7, 9, 8, 4, 7, 5
Offset: 1

Views

Author

Jean-François Alcover, May 23 2014

Keywords

Examples

			1.3468852519994065951820075554411...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 7.7 Riesz-Kolmogorov Constants, p. 474.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); Pi(R)^2/(8*Catalan(R)); // G. C. Greubel, Aug 25 2018
  • Maple
    s:= convert(evalf(Pi^2/(8*Catalan), 140), string):
    map(parse, subs("."=NULL, [seq(i, i=s)]))[]; # Alois P. Heinz, May 23 2014
  • Mathematica
    RealDigits[Pi^2/(8*Catalan), 10, 100] // First
  • PARI
    default(realprecision, 100); Pi^2/(8*Catalan) \\ G. C. Greubel, Aug 25 2018
    

Formula

(Sum_{n>=0} 1/(2*n + 1)^2) / (Sum_{n>=0} (-1)^n/(2*n + 1)^2) = A111003/A006752.
Equals Product_{k>=1} (1 + 1/A002145(k)^2)/(1 - 1/A002145(k)^2) = A243381 / A243379. - Vaclav Kotesovec, Apr 30 2020
Equals Sum_{q in A004614} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021
Equals 1/A377753. - Hugo Pfoertner, Nov 22 2024