A242856 Number of 2-matchings of the n X n grid graph.
2, 44, 224, 686, 1622, 3272, 5924, 9914, 15626, 23492, 33992, 47654, 65054, 86816, 113612, 146162, 185234, 231644, 286256, 349982, 423782, 508664, 605684, 715946, 840602, 980852, 1137944, 1313174, 1507886, 1723472, 1961372, 2223074, 2510114, 2824076, 3166592
Offset: 2
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..1000
- Ralf Stephan, In how many ways can we place two dominoes on the n x n chessboard? Proof of formula.
- Ralf Stephan, Two dominoes on the 3x3 chessboard, illustration of a(3)=44.
- Index entries for sequences related to dominoes.
- Index entries for sequences related to matchings.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Mathematica
LinearRecurrence[{5, -10, 10, -5, 1}, {2, 44, 224, 686, 1622}, 50] (* Paolo Xausa, May 20 2024 *)
-
PARI
Vec(-2*x^2*(x^4-7*x^3+12*x^2+17*x+1)/(x-1)^5 + O(x^100)) \\ Colin Barker, Jun 26 2014
-
Sage
def a(n): G = Graph(graphs.Grid2dGraph(n,n)) G.relabel() return G.matching_polynomial()[n^2-4]
Formula
a(n) = 2*n^4 - 4*n^3 - 5*n^2 + 13*n - 4.
G.f.: -2*x^2*(x^4-7*x^3+12*x^2+17*x+1) / (x-1)^5. - Colin Barker, Jun 26 2014
a(n + 1) = (1/2)*A046092(n)*(A046092(n) - 1) - A016742(n) - A054000(n). - Nicolas Bělohoubek, May 15 2024
E.g.f.: 4 - 2*x + exp(x)*(2*x^4 + 8*x^3 - 3*x^2 + 6*x - 4). - Stefano Spezia, Jun 04 2024
Extensions
a(7)-a(36) from Alois P. Heinz, Jun 01 2014
Comments