A242571 Triangular numbers T such that sum of the factorials of digits of T is semiprime.
3, 15, 28, 105, 120, 171, 210, 231, 406, 561, 741, 820, 990, 1081, 1275, 1378, 1485, 1540, 1596, 1953, 2211, 2485, 2775, 3003, 3240, 3321, 3741, 3916, 4005, 4371, 4560, 4851, 5460, 6105, 6903, 7381, 7750, 8001, 8128, 8515, 9316, 9591, 9730, 10153, 10440, 10878
Offset: 1
Examples
18*(18+1)/2 = 171 is triangular number. 1! + 7! + 1! = 5042 = 2 * 2521 is semiprime. Hence 171 is in the sequence. 28*(28+1)/2 = 406 is triangular number. 4! + 0! + 6! = 745 = 5 * 149 is semiprime. Hence 406 is in the sequence.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): A242571= proc() if bigomega(add( i!,i = convert((n*(n+1)/2), base, 10))(n*(n+1)/2))=2 then RETURN (n*(n+1)/2);fi; end: seq(A242571 (),n=1..300);
-
Mathematica
fQ[n_] := PrimeOmega[ Total[ IntegerDigits[ n (n + 1)/2]!]] == 2; s = Select[ Range@ 160, fQ@# &]; s (s + 1)/2 (* Robert G. Wilson v, May 26 2014 *)
Comments